New! Sign up for our free email newsletter.
Science News
from research organizations

Electron lens formed by light: A new method for atomic-resolution electron microscopes

Date:
April 11, 2022
Source:
Tohoku University
Summary:
Researchers have proposed a new method to form an electron lens that will help reduce installation costs for electron microscopes with atomic resolution, proliferating their use. Instead of the electrostatic and magnetic fields employed in conventional electron lenses, they utilized a light field electron-lens.
Share:
FULL STORY

Electron microscopy enables researchers to visualize tiny objects such as viruses, the fine structures of semiconductor devices, and even atoms arranged on a material surface. Focusing down the electron beam to the size of an atom is vital for achieving such high spatial resolution. However, when the electron beam passes through an electrostatic or magnetic lens, the rays of electrons exhibit different focal positions depending on the focusing angle and the beam spreads out at the focus. Correcting this "spherical aberration" is costly and complex, meaning that only a select few scientists and companies possess electron microscopes with atomic resolution.

Researchers from Tohoku University have proposed a new method to form an electron lens that uses a light field instead of the electrostatic and magnetic fields employed in conventional electron lenses. A ponderomotive force causes the electrons traveling in the light field to be repelled from regions of high optical intensity. Using this phenomenon, a doughnut-shaped light beam placed coaxially with an electron beam is expected to produce a lensing effect on the electron beam.

The researches theoretically assessed the characteristics of the light-field electron lens formed using a typical doughnut-shaped light beam -- known as a Bessel or Laguerre-Gaussian beam. From there, they obtained a simple formula for focal length and spherical aberration coefficients which allowed them to determine rapidly the guiding parameters necessary for the actual electron lens design.

The formulas demonstrated that the light-field electron lens generates a "negative" spherical aberration which opposes the aberration of electrostatic and magnetic electron lenses. The combination of the conventional electron lens with a "positive" spherical aberration and a light-field electron lens that offset the aberration reduced the electron beams size to the atomic scale. This means that the light-field electron lens could be used as a spherical aberration corrector.

"The light-field electron lens has unique characteristics not seen in conventional electrostatic and magnetic electron lenses," says Yuuki Uesugi, assistant professor at the Institute of Multidisciplinary Research for Advanced Materials at Tohoku University and lead author of the study. "The realization of light-based aberration corrector will significantly reduce installation costs for electron microscopes with atomic resolution, leading to their widespread use in diverse scientific and industrial fields," adds Uesugi.

Looking ahead, Uesugi and colleagues are exploring ways for the practical application of next-generation electron microscopes using the light-field electron lens.


Story Source:

Materials provided by Tohoku University. Note: Content may be edited for style and length.


Journal Reference:

  1. Yuuki Uesugi, Yuichi Kozawa, Shunichi Sato. Properties of electron lenses produced by ponderomotive potential with Bessel and Laguerre–Gaussian beams. Journal of Optics, 2022; DOI: 10.1088/2040-8986/ac6524

Cite This Page:

Tohoku University. "Electron lens formed by light: A new method for atomic-resolution electron microscopes." ScienceDaily. ScienceDaily, 11 April 2022. <www.sciencedaily.com/releases/2022/04/220411101328.htm>.
Tohoku University. (2022, April 11). Electron lens formed by light: A new method for atomic-resolution electron microscopes. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2022/04/220411101328.htm
Tohoku University. "Electron lens formed by light: A new method for atomic-resolution electron microscopes." ScienceDaily. www.sciencedaily.com/releases/2022/04/220411101328.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES