Lightning impacts edge of space in ways not previously observed
- Date:
- June 14, 2021
- Source:
- University of Central Florida
- Summary:
- A team of researchers working with data collected by an Incoherent Scatter Radar (ISR) have examined the simultaneous impacts of thunderstorms and solar flares on the ionospheric D-region (often referred to as the edge of space).
- Share:
Solar flares jetting out from the sun and thunderstorms generated on Earth impact the planet's ionosphere in different ways, which have implications for the ability to conduct long range communications.
A team of researchers working with data collected by the Incoherent Scatter Radar (ISR) at the Arecibo Observatory, satellites, and lightning detectors in Puerto Rico have for the first time examined the simultaneous impacts of thunderstorms and solar flares on the ionospheric D-region (often referred to as the edge of space).
In the first of its kind analysis, the team determined that solar flares and lightning from thunderstorms trigger unique changes to that edge of space, which is used for long-range communications such the GPS found in vehicles and airplanes.
The work, led by New Mexico Tech assistant professor of physics Caitano L. da Silva was published recently in the journal Scientific Reports, a journal of the Nature Publishing Group.
"These are really exciting results," says da Silva. "One of the key things we showed in the paper is that lightning- and solar flare-driven signatures are completely different. The first tends to create electron density depletions, while the second enhancements (or ionization)."
While the AO radar used in the study is no longer available because of the collapse of AO's telescope in December of 2020, scientists believe that the data they collected and other AO historical data will be instrumental in advancing this work.
"This study helps emphasize that, in order to fully understand the coupling of atmospheric regions, energy input from below (from thunderstorms) into the lower ionosphere needs to be properly accounted for," da Silva says. "The wealth of data collected at AO over the years will be a transformative tool to quantify the effects of lightning in the lower ionosphere."
Better understanding the impact on the Earth's ionosphere will help improve communications.
da Silva worked with a team of researchers at the Arecibo Observatory (AO) in Puerto Rico, a National Science Foundation facility managed by the University of Central Florida under a cooperative agreement. The co-authors are AO Senior Scientist Pedrina Terra, Assistant Director of Science Operations Christiano G. M. Brum and Sophia D. Salazar a student at NMT who spent her 2019 summer at the AO as part of the NSF- supported Research Undergraduate Experience. Salazar completed the initial analysis of the data as part of her internship with the senior scientists' supervision.
"The Arecibo Observatory REU is hands down one of the best experiences I've had so far," says the 21-year-old. "The support and encouragement provided by the AO staff and REU students made the research experience everything that it was. There were many opportunities to network with scientists at AO from all over the world, many of which I would likely never have met without the AO REU."
AO's Terra and Brum worked with Salazar taking her initial data analysis, refining it and providing interpretation for the study.
"Sophia's dedication and her ability to solve problems grabbed our attention from the very first day of the REU program," Brum says.
Story Source:
Materials provided by University of Central Florida. Original written by Zenaida Gonzalez Kotala. Note: Content may be edited for style and length.
Journal Reference:
- Caitano L. da Silva, Sophia D. Salazar, Christiano G. M. Brum, Pedrina Terra. Survey of electron density changes in the daytime ionosphere over the Arecibo observatory due to lightning and solar flares. Scientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-89662-x
Cite This Page: