New! Sign up for our free email newsletter.
Science News
from research organizations

New software improves accuracy of factories' mass-produced 3D-printed parts

Date:
March 17, 2021
Source:
University of Illinois Grainger College of Engineering
Summary:
Researchers have developed software to improve the accuracy of 3D-printed parts, seeking to reduce costs and waste for companies using additive manufacturing to mass produce parts in factories.
Share:
FULL STORY

Researchers at University of Illinois Urbana-Champaign developed software to improve the accuracy of 3D-printed parts, seeking to reduce costs and waste for companies using additive manufacturing to mass produce parts in factories.

"Additive manufacturing is incredibly exciting and offers tremendous benefits, but consistency and accuracy on mass-produced 3D-printed parts can be an issue. As with any production technology, parts built should be as close to identical as possible, whether it is 10 parts or 10 million," said Professor Bill King, Andersen Chair in the Department of Mechanical Science and Engineering and leader of the project.

The team's software allows for the rapid and automatic measurement of additively manufactured parts -- a processes that is typically time consuming and costly. It also allows for increased accuracy.

"Factories that rely on 3D printing are being built rapidly all over the world. Our software helps ensure production is consistent, accurate, and cost-effective," King said.

The software tracks how the accuracy of an additively manufactured part depends on which printer made the part and where the part was located in the printer. This process works by measuring parts using optical scanning technology and analysis of the scan data. This analysis allows a user to determine which parts are accurate and identifies which printers, and settings, produce the most accurate parts.


Story Source:

Materials provided by University of Illinois Grainger College of Engineering. Original written by Bill Bell. Note: Content may be edited for style and length.


Journal Reference:

  1. Davis J. McGregor, Samuel Rylowicz, Aaron Brenzel, Daniel Baker, Charles Wood, David Pick, Hallee Deutchman, Chenhui Shao, Sameh Tawfick, William P. King. Analyzing part accuracy and sources of variability for additively manufactured lattice parts made on multiple printers. Additive Manufacturing, 2021; 40: 101924 DOI: 10.1016/j.addma.2021.101924

Cite This Page:

University of Illinois Grainger College of Engineering. "New software improves accuracy of factories' mass-produced 3D-printed parts." ScienceDaily. ScienceDaily, 17 March 2021. <www.sciencedaily.com/releases/2021/03/210317094605.htm>.
University of Illinois Grainger College of Engineering. (2021, March 17). New software improves accuracy of factories' mass-produced 3D-printed parts. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2021/03/210317094605.htm
University of Illinois Grainger College of Engineering. "New software improves accuracy of factories' mass-produced 3D-printed parts." ScienceDaily. www.sciencedaily.com/releases/2021/03/210317094605.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES