New! Sign up for our free email newsletter.
Science News
from research organizations

How the brain remembers where you're heading to

Researchers have made new discoveries about how certain brainwaves aid navigation

Date:
July 8, 2019
Source:
Ruhr-University Bochum
Summary:
The brain appears to implement a GPS system for spatial navigation; however, it is not yet fully understood how it works. Researchers now suggest that rhythmic fluctuations in brain activity, so-called theta oscillations, may play a role in this process.
Share:
FULL STORY

The brain appears to implement a GPS system for spatial navigation; however, it is not yet fully understood how it works. In the journal Science Advances, researchers from Freiburg, Bochum and Beijing now suggest that rhythmic fluctuations in brain activity, so-called theta oscillations, may play a role in this process. These brainwaves might help remember the locations to which a person is navigating. This is the result of the researchers' study conducted with epilepsy patients who had electrodes implanted in the brain for the purpose of surgical planning. With the aid of these electrodes, the researchers recorded neuronal activity during a navigation task in a virtual reality setting.

A team headed by Dr. Lukas Kunz, Universitätsklinikum Freiburg, and Professor Nikolai Axmacher, Head of the Department of Neuropsychology at Ruhr-Universität Bochum, published their findings on 3 July 2019.

Experiments in virtual reality

Previous studies had demonstrated that brain oscillations show a characteristic pattern during navigation. Theta oscillations, during which brain activity changes at a frequency of approximately four hertz, appear to play a crucial role in this process. But it had not been fully understood how, exactly, they support spatial navigation.

In the experiments, the epilepsy patients learned to associate individual objects with specific locations in a virtual environment. For each of the acquired object-location associations, the researchers identified a characteristic brain activity pattern.

Subsequently, the participants had to remember which object was associated with which location. While they navigated to that location in the virtual environment, the brain reactivated the location-specific activity patterns. The reactivation of brain activity for different object-location pairs occurred at different points of time during the theta cycles. "Accordingly, theta oscillations may coordinate the reactivation of different memories and, moreover, may help distinguish between competing memories," says Lukas Kunz.

Searching for a biomarker for Alzheimer's

"Many disorders are associated with disorientation and memory loss; it is therefore vitally important to gain an understanding of the underlying neuronal mechanisms," explains Nikolai Axmacher. The Bochum-based researcher and his colleagues are hoping that these studies may help identify novel biomarkers for such neurological disorders.


Story Source:

Materials provided by Ruhr-University Bochum. Note: Content may be edited for style and length.


Journal Reference:

  1. Lukas Kunz, Liang Wang, Daniel Lachner-Piza, Hui Zhang, Armin Brandt, Matthias Dümpelmann, Peter C. Reinacher, Volker A. Coenen, Dong Chen, Wen-Xu Wang, Wenjing Zhou, Shuli Liang, Philip Grewe, Christian G. Bien, Anne Bierbrauer, Tobias Navarro Schröder, Andreas Schulze-Bonhage, Nikolai Axmacher. Hippocampal theta phases organize the reactivation of large-scale electrophysiological representations during goal-directed navigation. Science Advances, 2019; 5 (7): eaav8192 DOI: 10.1126/sciadv.aav8192

Cite This Page:

Ruhr-University Bochum. "How the brain remembers where you're heading to." ScienceDaily. ScienceDaily, 8 July 2019. <www.sciencedaily.com/releases/2019/07/190708112452.htm>.
Ruhr-University Bochum. (2019, July 8). How the brain remembers where you're heading to. ScienceDaily. Retrieved April 22, 2024 from www.sciencedaily.com/releases/2019/07/190708112452.htm
Ruhr-University Bochum. "How the brain remembers where you're heading to." ScienceDaily. www.sciencedaily.com/releases/2019/07/190708112452.htm (accessed April 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES