New! Sign up for our free email newsletter.
Science News
from research organizations

Chemical engineers functionalize boron nitride with other nanosystems

Date:
September 25, 2018
Source:
University of Illinois at Chicago
Summary:
Scientists report that treatment with a superacid causes boron nitride layers to separate into atomically thick sheets, while creating binding sites on the surface of these sheets that provide opportunities to interface with nanoparticles, molecules and other 2D nanomaterials, like graphene.
Share:
FULL STORY

Researchers at the University of Illinois at Chicago have discovered a route to alter boron nitride, a layered 2D material, so that it can bind to other materials, like those found in electronics, biosensors and airplanes, for example. Being able to better-incorporate boron nitride into these components could help dramatically improve their performance.

The scientific community has long been interested in boron nitride because of its unique properties -- it is strong, ultrathin, transparent, insulating, lightweight and thermally conductive -- which, in theory, makes it a perfect material for use by engineers in a wide variety of applications. However, boron nitride's natural resistance to chemicals and lack of surface-level molecular binding sites have made it difficult for the material to interface with other materials used in these applications.

UIC's Vikas Berry and his colleagues are the first to report that treatment with a superacid causes boron nitride layers to separate into atomically thick sheets, while creating binding sites on the surface of these sheets that provide opportunities to interface with nanoparticles, molecules and other 2D nanomaterials, like graphene. This includes nanotechnologies that use boron nitride to insulate nano-circuits.

Their findings are published in ACS Nano, a journal of the American Chemical Society.

"Boron nitride is like a stack of highly sticky papers in a ream, and by treating this ream with chlorosulfonic acid, we introduced positive charges on the boron nitride layers that caused the sheets to repel each other and separate," said Berry, associate professor and head of chemical engineering at the UIC College of Engineering and corresponding author on the paper.

Berry said that "like magnets of the same polarity," these positively charged boron nitride sheets repel one another.

"We showed that the positive charges on the surfaces of the separated boron nitride sheets make it more chemically active," Berry said. "The protonation -- the addition of positive charges to atoms -- of internal and edge nitrogen atoms creates a scaffold to which other materials can bind."

Berry said that the opportunities for boron nitride to improve composite materials in next-generation applications are vast.

"Boron and nitrogen are on the left and the right of carbon on the periodic table and therefore, boron-nitride is isostructural and isoelectronic to carbon-based graphene, which is considered a 'wonder material,'" Berry said. This means these two materials are similar in their atomic crystal structure (isostructural) and their overall electron density (isoelectric), he said.

"We can potentially use this material in all kinds of electronics, like optoelectronic and piezoelectric devices, and in many other applications, from solar-cell passivation layers, which function as filters to absorb only certain types of light, to medical diagnostic devices," Berry said.


Story Source:

Materials provided by University of Illinois at Chicago. Note: Content may be edited for style and length.


Journal Reference:

  1. Kabeer Jasuja, Kayum Ayinde, Christina L. Wilson, Sanjay K. Behura, Myles A. Ikenbbery, David Moore, Keith Hohn, Vikas Berry. Introduction of Protonated Sites on Exfoliated, Large-Area Sheets of Hexagonal Boron Nitride. ACS Nano, 2018; DOI: 10.1021/acsnano.8b03651

Cite This Page:

University of Illinois at Chicago. "Chemical engineers functionalize boron nitride with other nanosystems." ScienceDaily. ScienceDaily, 25 September 2018. <www.sciencedaily.com/releases/2018/09/180925115213.htm>.
University of Illinois at Chicago. (2018, September 25). Chemical engineers functionalize boron nitride with other nanosystems. ScienceDaily. Retrieved December 28, 2024 from www.sciencedaily.com/releases/2018/09/180925115213.htm
University of Illinois at Chicago. "Chemical engineers functionalize boron nitride with other nanosystems." ScienceDaily. www.sciencedaily.com/releases/2018/09/180925115213.htm (accessed December 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES