New! Sign up for our free email newsletter.
Science News
from research organizations

Water may be key to understanding sweetness

Date:
July 18, 2018
Source:
American Chemical Society
Summary:
A cranberry, honey or a candy bar - which tastes the sweetest? These foods contain sugars that humans can perceive differently. A cranberry seems tart, whereas a candy bar can be excessively sweet, and honey is somewhere in the middle. Now researchers have shown that the perception of sweetness depends on molecular interactions between specific sugars and water in the saliva.
Share:
FULL STORY

A cranberry, honey or a candy bar -- which tastes the sweetest? These foods contain sugars that humans can perceive differently. A cranberry seems tart, whereas a candy bar can be excessively sweet, and honey is somewhere in the middle. Now, in a study in ACS' The Journal of Physical Chemistry Letters, researchers have shown that the perception of sweetness depends on molecular interactions between specific sugars and water in the saliva.

The sugars mannose, glucose and fructose have almost identical chemical structures. Yet fructose (found in many candy bars) is about twice as sweet as glucose (found in honey), whereas mannose (found in cranberries) is considered tasteless. Sugars stimulate specific protein receptors on the taste buds of the tongue, which sends a signal to the brain that a food tastes sweet. But scientists don't know why we perceive some sugars as being sweeter than others. Because these interactions take place in saliva, which is mostly water, Maria Antonietta Ricci and colleagues wondered if water might play a role.

The researchers used a technique called neutron diffraction with isotopic substitution to probe the structures of mannose, glucose and fructose in water. They found that none of the sugars substantially disrupted how water molecules interact with each other. However, the three sugars interacted with water molecules in different ways. Mannose, the least sweet of the sugars, formed longer and weaker hydrogen bonds with water than glucose or fructose. Fructose, the sweetest of the sugars, formed the shortest and strongest hydrogen bonds with water. The researchers surmise that shorter hydrogen bonds with water could allow the sugar molecule to bind more snugly with the protein receptor, causing greater stimulation and perception of sweetness.


Story Source:

Materials provided by American Chemical Society. Note: Content may be edited for style and length.


Journal Reference:

  1. F. Bruni, C. Di Mino, S. Imberti, S. E. McLain, N. H. Rhys, M. A. Ricci. Hydrogen Bond Length as a Key To Understanding Sweetness. The Journal of Physical Chemistry Letters, 2018; 9 (13): 3667 DOI: 10.1021/acs.jpclett.8b01280

Cite This Page:

American Chemical Society. "Water may be key to understanding sweetness." ScienceDaily. ScienceDaily, 18 July 2018. <www.sciencedaily.com/releases/2018/07/180718113213.htm>.
American Chemical Society. (2018, July 18). Water may be key to understanding sweetness. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2018/07/180718113213.htm
American Chemical Society. "Water may be key to understanding sweetness." ScienceDaily. www.sciencedaily.com/releases/2018/07/180718113213.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES