New! Sign up for our free email newsletter.
Science News
from research organizations

Gene boosts rice growth and yield in salty soil

Discovery of a gene that helps rice plants grow in salty soil paves the way to developing salt-tolerant crops

Date:
March 26, 2018
Source:
American Society of Plant Biologists
Summary:
Soil salinity poses a major threat to food security, greatly reducing the yield of agricultural crops. Rising global temperatures are expected to accelerate the buildup of salt in soil, placing an increasing burden on agricultural production. Researchers have identified a gene that limits yield losses in rice plants exposed to salt stress and deciphered the underlying mechanism.
Share:
FULL STORY

Around 20% of the world's irrigated land is considered to contain elevated concentrations of salt, and the soil continues to get saltier as the climate warms. Agricultural production is hard hit by soil salinity; salt stress reduces the growth and yield of most plants, resulting in billions of dollars in crop yield losses annually. Rice -- the staple food of more than half the world's population -- is particularly sensitive to salty soil, with even moderate levels of salt resulting in substantial yield losses. There is thus an urgent need to develop rice lines that can withstand salty conditions.

A team of scientists led by Jian-Zhong Lin and Xuan-Ming Liu of Hunan University in Changsha, China recently identified a gene that contributes to salt stress tolerance in rice. The gene, which they named STRK1 (salt tolerance receptor-like cytoplasmic kinase 1), was activated under salt stress conditions. The researchers generated two sets of transgenic plants, one in which STRK1 was expressed at high levels, and the other in which expression was greatly reduced. Under regular growth conditions, both sets of transgenic plants appeared normal. However, when challenged with salt, the transgenic plants with elevated STRK1 expression were greener and larger than the non-transgenic control plants, and those with reduced levels of STRK1 expression were smaller and browner than the controls.

Next, the team examined the effect of STRK1 on yield. "Notably, overexpression of STRK1 in rice not only improved growth but also markedly limited the grain yield loss under salt stress conditions," said Jian-Zhong Lin.

The team then turned their attention to deciphering the mechanism by which STRK1 enhances the plant's tolerance to salt. Salt stress triggers the production of potentially harmful reactive oxygen species, such as hydrogen peroxide, in plant cells. The group found that STRK1 (the protein encoded by STRK1) interacts with and activates a protein named CatC, which belongs to a family of proteins that decomposes hydrogen peroxide into water and oxygen. Thus, STRK1 increases the plant's tolerance to salt stress by keeping the levels of hydrogen peroxide in check, and thereby minimizing the damage caused by accumulating reactive oxygen species.

These exciting findings bring the research community closer to developing rice plants that thrive in salty soil. "Agricultural productivity is increasingly threatened by the salinization of irrigated farmland...Our work demonstrates that STRK1 is a promising candidate gene for protection of yield in crop plants exposed to salt stress," stated Xuan-Ming Liu.


Story Source:

Materials provided by American Society of Plant Biologists. Note: Content may be edited for style and length.


Journal Reference:

  1. Yanbiao Zhou, Cong Liu, Dongying Tang, Lu Yan, Dan Wang, Yuanzhu Yang, jinshan gui, Xiao-Ying Zhao, Laigeng Li, Xiao-Dan Tang, Feng Yu, Jiang-Lin Li, Lan-Lan Liu, Yonghua Zhu, Jianzhong Lin, Xuan-Ming Liu. The Receptor-like Cytoplasmic Kinase STRK1 Phosphorylates and Activates CatC, thereby Regulating H2O2 Homeostasis and Improving Salt Tolerance in Rice. The Plant Cell, 2018; tpc.01000.2017 DOI: 10.1105/tpc.17.01000

Cite This Page:

American Society of Plant Biologists. "Gene boosts rice growth and yield in salty soil." ScienceDaily. ScienceDaily, 26 March 2018. <www.sciencedaily.com/releases/2018/03/180323141336.htm>.
American Society of Plant Biologists. (2018, March 26). Gene boosts rice growth and yield in salty soil. ScienceDaily. Retrieved January 18, 2025 from www.sciencedaily.com/releases/2018/03/180323141336.htm
American Society of Plant Biologists. "Gene boosts rice growth and yield in salty soil." ScienceDaily. www.sciencedaily.com/releases/2018/03/180323141336.htm (accessed January 18, 2025).

Explore More

from ScienceDaily

RELATED STORIES