New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Sea water

Seawater is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of approximately 3.5%, or 35 parts per thousand. This means that for every 1 litre (1000 mL) of seawater there are 35 grams of salts (mostly, but not entirely, sodium chloride) dissolved in it. Although a vast majority of seawater is found in oceans with salinity around 3.5%, seawater is not uniformly saline throughout the world. The planet's freshest (least saline) sea water is in the eastern parts of Gulf of Finland and in the northern end of Gulf of Bothnia, both part of the Baltic Sea. The most saline open sea is the Red Sea, where high temperatures and confined circulation result in high rates of surface evaporation and there is little fresh inflow from rivers. The salinity in isolated seas and salt-water lakes (for example, the Dead Sea) can be considerably greater. Seawater is more enriched in dissolved ions of all types compared to fresh water.

Scientific theories behind the origins of sea salt started with Sir Edmond Halley in 1715, who proposed that salt and other minerals were carried into the sea by rivers, having been leached out of the ground by rainfall runoff. Upon reaching the ocean, these salts would be retained and concentrated as the process of evaporation removed the water. Halley noted that of the small number of lakes in the world without ocean outlets (such as the Dead Sea and the Caspian Sea), most have high salt content. Halley termed this process "continental weathering".

Halley's theory is partly correct. In addition, sodium was leached out of the ocean floor when the oceans first formed.

Related Stories
 


Earth & Climate News

October 8, 2025

The Amazon has suffered its most destructive fire season in more than two decades, releasing a staggering 791 million tons of carbon dioxide—on par with Germany’s annual emissions. Scientists found that for the first time, fire-driven ...
Researchers at KAUST have confirmed that the Red Sea once vanished entirely, turning into a barren salt desert before being suddenly flooded by waters from the Indian Ocean. The flood carved deep channels and restored marine life in less than ...
Marine heatwaves can jam the ocean’s natural carbon conveyor belt, preventing carbon from reaching the deep sea. Researchers studying two major heatwaves in the Gulf of Alaska found that plankton shifts caused carbon to build up near the surface ...
Solar energy is now the cheapest source of power worldwide, driving a massive shift toward renewables. Falling battery prices and innovations in solar materials are making clean energy more reliable than ever. Yet, grid congestion and integration ...
New research reveals that deep-sea mining could dramatically threaten 30 species of sharks, rays, and ghost sharks whose habitats overlap with proposed mining zones. Many of these species, already at risk of extinction, could face increased dangers ...
Billions of years ago, Earth’s atmosphere was hostile, with barely any oxygen and toxic conditions for life. Researchers from the Earth-Life Science Institute studied Japan’s iron-rich hot springs, which mimic the ancient oceans, to uncover how ...
In 2020, California’s Creek Fire became so intense that it generated its own thunderstorm, a phenomenon called a pyrocumulonimbus cloud. For years, scientists struggled to replicate these explosive fire-born storms in climate models, leaving major ...
Swiss glaciers lost nearly 3% of their volume in 2025, following a snow-poor winter and scorching summer heatwaves. The melt has been so extreme that some glaciers lost more than two meters of ice thickness in a single season. Scientists caution ...
Fungi may have shaped Earth’s landscapes long before plants appeared. By combining rare gene transfers with fossil evidence, researchers have traced fungal origins back nearly a billion years earlier than expected. These ancient fungi may have ...
Scientists have uncovered an unexpected witness to Earth’s distant past: tiny iron oxide stones called ooids. These mineral snowballs lock away traces of ancient carbon, revealing that oceans between 1,000 and 541 million years ago held far less ...
Scientists found that biochar doesn’t just capture pollutants, it actively destroys them using direct electron transfer. This newly recognized ability accounts for up to 40% of its cleaning power and remains effective through repeated use. The ...
Bio-tar, once seen as a toxic waste, can be transformed into bio-carbon with applications in clean energy and environmental protection. This innovation could reduce emissions, create profits, and solve a major bioenergy industry ...

Latest Headlines

updated 12:56 pm ET