New! Sign up for our free email newsletter.
Science News
from research organizations

Want To Petrify Wood Without Waiting A Few Million Years? Try This

Date:
February 13, 2005
Source:
Pacific Northwest National Laboratory
Summary:
California has Silicon Valley. Could a Silicon Forest in Washington be next? A team of materials scientists from Pacific Northwest National Laboratory is on it.
Share:
FULL STORY

RICHLAND, Wash. – California has Silicon Valley. Could a Silicon Forest in Washington be next? A team of materials scientists from Pacific Northwest National Laboratory is on it.

Yongsoon Shin and colleagues at the Department of Energy lab have converted wood to mineral, achieving in days what it takes nature millions of years to do in such places as the Gingko Petrified Forest, an hour up the Columbia River. There, trees likely felled in a cataclysmic eruption and, buried without oxygen beneath lava, leached out their woody compounds and sponged up the soil's minerals over the eons.

Shin's petrified wood journey began in a less dramatic fashion, a few minutes away at Lowe's, Shin's group reports in the current issue of the journal Advanced Materials. There, in the do-it-yourselfer chain's lumberyard, they picked up their raw material: pine and poplar boards. Back at PNNL, they gave a 1 centimeter cube of wood a two-day acid bath, soaked it in a silica solution for two more (for best results, repeat this step up to three times), air-dried it, popped it into an argon-filled furnace gradually cranked up to 1,400 degrees centigrade to cook for two hours, then let cool in argon to room temperature.

Presto. Instant petrified wood, the silica taking up permanent residence with the carbon left in the cellulose to form a new silicon carbide, or SiC, ceramic. The material "replicates exactly the wood architecture," according to Shin.

Although SiC chips are unlikely to replace computer chips, materials scientists are interested in the novel properties of ceramics built on templates of wood and, in Shin's lab, other natural materials such as pollen and rice hulls. The intricate network of microchannels and pores in plant matter provide enormous surfaces-in wood, 1 gram of material flattened out would cover a football field-that may prove useful in industrial chemical separations or filtering pollutants from gaseous effluents.

The acid-leaching method yields an identical, positive reproduction of the wood. If Shin wants to capture a negative impression, he can alter the pH to favor the base end of the scale.

"The positive replica is a lot better in terms of surface area and uniformity," Shin said. "Negative forms collapse easily, but it is possible to make fiber-type materials," where the minerals fill in wood-grain openings.

PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,900, has a $650 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.


Story Source:

Materials provided by Pacific Northwest National Laboratory. Note: Content may be edited for style and length.


Cite This Page:

Pacific Northwest National Laboratory. "Want To Petrify Wood Without Waiting A Few Million Years? Try This." ScienceDaily. ScienceDaily, 13 February 2005. <www.sciencedaily.com/releases/2005/02/050210005224.htm>.
Pacific Northwest National Laboratory. (2005, February 13). Want To Petrify Wood Without Waiting A Few Million Years? Try This. ScienceDaily. Retrieved December 26, 2024 from www.sciencedaily.com/releases/2005/02/050210005224.htm
Pacific Northwest National Laboratory. "Want To Petrify Wood Without Waiting A Few Million Years? Try This." ScienceDaily. www.sciencedaily.com/releases/2005/02/050210005224.htm (accessed December 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES