New! Sign up for our free email newsletter.
Science News
from research organizations

The changes to cell DNA that could revolutionize disease prevention

Mechanism in DNA regulates how disease-causing mutations are inherited

Date:
August 21, 2024
Source:
University of Queensland
Summary:
Researchers have discovered a mechanism in DNA that regulates how disease-causing mutations are inherited. The team identified two enzymes that regulate a chemical modification, 6mA, in mitochondrial DNA. Without the modification, DNA mutations accumulate. These mutations contribute to diseases like dementia, cancer, and diabetes. The study shows that the 6mA modification controls these mutations, suggesting that enhancing its levels could slow disease progression.
Share:
FULL STORY

University of Queensland researchers have discovered a mechanism in DNA that regulates how disease-causing mutations are inherited.

Dr Anne Hahn and Associate Professor Steven Zuryn from UQ's Queensland Brain Institute said the findings could provide a promising therapeutic avenue to stop the onset of heritable and age-related diseases.

"Mitochondrial DNA is essential for cell function," Dr Hahn said.

"But as we age it mutates, contributing to diseases like dementia, cancer and diabetes.

"Our team identified 2 enzymes that regulate a chemical modification -- adenine methylation or 6mA -- in mitochondrial DNA across various species, including humans."

"Removing this modification leads to uncontrolled accumulation and inheritance of mutations in the DNA," Dr Hahn said.

"Our study shows the 6mA modification controls these mutations, suggesting that enhancing levels of 6mA could slow disease progression."

The concept of epigenetics is an evolving field of research that reveals how environmental factors such as childhood experiences, can influence gene expression.

This challenges the old belief that DNA mutations inevitably lead to disease.

Dr Hahn said the study bridges the gap between genetics and epigenetics.

"It shows how this epigenetic mark guards against disease-causing mutations and ensures the continuity of healthy cells," she said.

Dr Zuryn said epigenetic modification was not only essential for individual health but also for safeguarding the genetic integrity of future generations.

"Our discovery was largely performed in the model organism C. elegans, and cells grown in a laboratory," he said.

"The team is now exploring whether similar mechanisms exist in humans and how they might influence disease outcomes.

"This research has vast implications and offers a novel perspective on genetic and epigenetic factors in health and disease."


Story Source:

Materials provided by University of Queensland. Note: Content may be edited for style and length.


Journal Reference:

  1. Anne Hahn et al. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metabolism, 2024 DOI: 10.1016/j.cmet.2024.07.020

Cite This Page:

University of Queensland. "The changes to cell DNA that could revolutionize disease prevention." ScienceDaily. ScienceDaily, 21 August 2024. <www.sciencedaily.com/releases/2024/08/240821221840.htm>.
University of Queensland. (2024, August 21). The changes to cell DNA that could revolutionize disease prevention. ScienceDaily. Retrieved January 21, 2025 from www.sciencedaily.com/releases/2024/08/240821221840.htm
University of Queensland. "The changes to cell DNA that could revolutionize disease prevention." ScienceDaily. www.sciencedaily.com/releases/2024/08/240821221840.htm (accessed January 21, 2025).

Explore More

from ScienceDaily

RELATED STORIES