New! Sign up for our free email newsletter.
Science News
from research organizations

Chemists synthesize an improved building block for medicines

Chemists overcome a major hurdle in synthesizing a more stable form of heterocycle -- a common component of most modern pharmaceuticals

Date:
July 3, 2024
Source:
University of British Columbia
Summary:
Research could help drug developers improve the safety profiles of medications and reduce side effects.
Share:
FULL STORY

Chemists have overcome a major hurdle in synthesizing a more stable form of heterocycle -- a family of organic compounds that are a common component of most modern pharmaceuticals.

The research, which could expand the toolkit available to drug developers in improving the safety profiles of medications and reducing side effects, was published in Science by organic chemists at the University of British Columbia (UBC), the Massachusetts Institute of Technology (MIT), and the University of Michigan.

"Azetidines are a particularly useful, stable form of heterocycle, but synthesizing them has been incredibly challenging," says Dr. Corinna Schindler, Canada Research Chair in synthetic solutions for bioactive compounds at UBC and senior author on the paper.

Heterocycles play a major role in the design of modern drug families -- including cancer drugs and antibiotics. Some reviews indicate 85 per cent of all biologically active chemical entities contain a heterocycle.

But many heterocycles currently used in pharmaceutical design tend to oxidize under physiological conditions. This can lead to off-target effects and challenges with the safety profiles of medications.

Azetidines -- organic compounds that contain three carbon atoms and one nitrogen atom, and are liquid at room temperature -- are known to be metabolically robust and don't undergo oxidation reactions under physiological conditions.

"This is something that synthetic organic chemists have tried to achieve for a long time, and we're hopeful this will enable researchers to develop new synthetic transformations of azetidines with more useful chemical and medical functions," says Dr. Schindler, whose lab conducted the research at the University of Michigan with graduate student Emily Wearing and in conjunction with Dr. Heather Kulik's lab at the Massachusetts Institute of Technology.

The team used light-driven reactions and a computational approach to the problem and for the first time were able to engage compounds called imines productively in reactions to form new azetidines.


Story Source:

Materials provided by University of British Columbia. Note: Content may be edited for style and length.


Journal Reference:

  1. Emily R. Wearing, Yu-Cheng Yeh, Gianmarco G. Terrones, Seren G. Parikh, Ilia Kevlishvili, Heather J. Kulik, Corinna S. Schindler. Visible light–mediated aza Paternò–Büchi reaction of acyclic oximes and alkenes to azetidines. Science, 2024; 384 (6703): 1468 DOI: 10.1126/science.adj6771

Cite This Page:

University of British Columbia. "Chemists synthesize an improved building block for medicines." ScienceDaily. ScienceDaily, 3 July 2024. <www.sciencedaily.com/releases/2024/07/240703131752.htm>.
University of British Columbia. (2024, July 3). Chemists synthesize an improved building block for medicines. ScienceDaily. Retrieved January 23, 2025 from www.sciencedaily.com/releases/2024/07/240703131752.htm
University of British Columbia. "Chemists synthesize an improved building block for medicines." ScienceDaily. www.sciencedaily.com/releases/2024/07/240703131752.htm (accessed January 23, 2025).

Explore More

from ScienceDaily

RELATED STORIES