New! Sign up for our free email newsletter.
Science News
from research organizations

Researcher discovers threshold that triggers drought response in forests

Date:
February 21, 2023
Source:
University of Missouri-Columbia
Summary:
Missouri is home to an array of natural resources, with forests among the state's most valuable ecosystems. As warmer temperatures fueled by climate change affect ecosystems globally, forests are under stress to adapt to these changes and ensure their survival in a warmer world. Researchers now introduce the 'ecosystem wilting point' concept, which explains how whole forests respond to drought.
Share:
FULL STORY

Missouri is home to an array of natural resources, with forests among the state's most valuable ecosystems. As warmer temperatures fueled by climate change affect ecosystems globally, forests are under stress to adapt to these changes and ensure their survival in a warmer world.

In a new study, University of Missouri researcher Jeffrey Wood introduces the "ecosystem wilting point" concept, which explains how whole forests respond to drought. Wood and his research team found that when forests reach their ecosystem wilting point, they are less able to function properly, which includes their ability to absorb carbon dioxide. To learn how the forest behaved during periods of drought, Wood combined measurements of evapotranspiration (the loss of water to the air) and ecosystem water status, which indicates how hydrated the forest is.

"The motivating reason for being able to understand the drought response of forests is that, globally, drought is important now, and it's not expected to get better," said Wood, an assistant professor in the College of Agriculture, Food and Natural Resources. "We wanted to develop a better way to understand and characterize these ecosystems, so we can use that information to help with modeling the dynamics of vegetation over time and better understand the future impact on these ecosystems."

In pursuit of understanding the nuances of forests' stress, Wood and his co-authors reanalyzed data collected during an extreme drought event that took place in 2012 in Baskett Forest, an outdoor laboratory of 2,266 acres located five miles east of Ashland, Missouri. This study uses a method that was initially developed to understand the interaction between water and an individual cell. That method was later applied to leaves, and then Wood extended it in this study to analyze a whole forest.

In this study, this oak-hickory forest in central Missouri reaches its ecosystem wilting point between 2-4 weeks of extreme drought. At that point, the forest would need soaking rainfall to rejuvenate.

"The ecosystem wilting point is functionally significant in that when the forest passes that threshold, there is a noticeable change in how the forest is behaving," Wood said. "When you get into that highly stressed state, the forest is quite unresponsive to changes in the environment. So, when the sun comes up, you would tend to think that the forest turns on and starts to photosynthesize, but if the forest is past its ecosystem wilting point, it has a very limited capacity to respond to the changes in light in terms of carbon dioxide uptake because it's under so much stress."

This study offers insight into the water relations of whole forests, a useful tool for researchers exploring how forests across the globe handle temperature variations -- something Wood emphasizes is important as scientists manage forests in a way that prepares them to better withstand climate change.

"Forests are pretty important; they're connected to weather and the climate in ways that we still don't fully understand," Wood said.


Story Source:

Materials provided by University of Missouri-Columbia. Note: Content may be edited for style and length.


Journal Reference:

  1. Jeffrey D. Wood, Lianhong Gu, Paul J. Hanson, Christian Frankenberg, Lawren Sack. The ecosystem wilting point defines drought response and recovery of a Quercus‐Carya forest. Global Change Biology, 2023; DOI: 10.1111/gcb.16582

Cite This Page:

University of Missouri-Columbia. "Researcher discovers threshold that triggers drought response in forests." ScienceDaily. ScienceDaily, 21 February 2023. <www.sciencedaily.com/releases/2023/02/230221180113.htm>.
University of Missouri-Columbia. (2023, February 21). Researcher discovers threshold that triggers drought response in forests. ScienceDaily. Retrieved December 22, 2024 from www.sciencedaily.com/releases/2023/02/230221180113.htm
University of Missouri-Columbia. "Researcher discovers threshold that triggers drought response in forests." ScienceDaily. www.sciencedaily.com/releases/2023/02/230221180113.htm (accessed December 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES