New! Sign up for our free email newsletter.
Science News
from research organizations

Whole-genome sequencing reveals new secrets about killer fungus

Date:
March 2, 2022
Source:
University of Exeter
Summary:
New research reports the largest ever whole-genome sequencing project for the potentially fatal yeast infection Candida glabrata from hospitals across Scotland.
Share:
FULL STORY

New research from the University of Exeter reports the largest ever whole-genome sequencing project for the potentially fatal yeast infection Candida glabrata from hospitals across Scotland.

Candida glabrata is a type of yeast that can cause disease in humans. It most commonly affects the urinary tract, genitals, mouth, and the bloodstream. If it is not caught, these infections can become deadly. It also has a very high resistance to certain antifungal drugs, so understanding why resistance occurs is key to knowing how to treat it effectively.

The new research, published in Genetics, used samples from eight hospitals in Scotland to sequence the genome of Candida glabrata. This led to the discovery of a variety of new information on the species. This includes information on how they reproduce and the genetic diversity. It also found that genes that make it more likely to be infectious have an advantage for survival, and the drug-resistance genes often evolve within patients.

The discovery of this information gives scientists an advantage when it comes to treating candida glabrata. A better understanding of the genes involved allows researchers to focus their work in ways that were not possible before. It also helps aid understanding on how the pathogen spreads, which is important to identifying infections.

Dr Rhys Farrer, one of the Principal Investigators at the MRC Centre for Medical Mycology at the University of Exeter, said: "Our study sheds new light on the genetic diversity of Candida glabrata. We have demonstrated that this deadly human fungal pathogen is being spread between continents, probably by humans, and recombining to form new populations, which is likely contributing to its high virulence and increasing drug resistance."

The research was funded by the Medical Research Council and the Wellcome Trust.


Story Source:

Materials provided by University of Exeter. Note: Content may be edited for style and length.


Journal Reference:

  1. Nicolas Helmstetter, Aleksandra D Chybowska, Christopher Delaney, Alessandra Da Silva Dantas, Hugh Gifford, Theresa Wacker, Carol Munro, Adilia Warris, Brian Jones, Christina A Cuomo, Duncan Wilson, Gordon Ramage, Rhys A Farrer. Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes and drug-targets. Genetics, 2022; DOI: 10.1093/genetics/iyac031

Cite This Page:

University of Exeter. "Whole-genome sequencing reveals new secrets about killer fungus." ScienceDaily. ScienceDaily, 2 March 2022. <www.sciencedaily.com/releases/2022/03/220302210007.htm>.
University of Exeter. (2022, March 2). Whole-genome sequencing reveals new secrets about killer fungus. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2022/03/220302210007.htm
University of Exeter. "Whole-genome sequencing reveals new secrets about killer fungus." ScienceDaily. www.sciencedaily.com/releases/2022/03/220302210007.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES