New! Sign up for our free email newsletter.
Science News
from research organizations

Researchers engineer tiny machines that deliver medicine efficiently

Date:
November 3, 2020
Source:
Johns Hopkins Medicine
Summary:
Inspired by a parasitic worm that digs its sharp teeth into its host's intestines, researchers have designed tiny, star-shaped microdevices that can latch onto intestinal mucosa and release drugs into the body.
Share:
FULL STORY

Inspired by a parasitic worm that digs its sharp teeth into its host's intestines, Johns Hopkins researchers have designed tiny, star-shaped microdevices that can latch onto intestinal mucosa and release drugs into the body.

David Gracias, Ph.D., a professor in the Johns Hopkins University Whiting School of Engineering, and Johns Hopkins gastroenterologist Florin M. Selaru, M.D., director of the Johns Hopkins Inflammatory Bowel Disease Center, led a team of researchers and biomedical engineers that designed and tested shape-changing microdevices that mimic the way the parasitic hookworm affixes itself to an organism's intestines.

Made of metal and thin, shape-changing film and coated in a heat-sensitive paraffin wax, "theragrippers," each roughly the size of a dust speck, potentially can carry any drug and release it gradually into the body.

The team published results of an animal study this week as the cover article in the journal Science Advances.

Gradual or extended release of a drug is a long-sought goal in medicine. Selaru explains that a problem with extended-release drugs is they often make their way entirely through the gastrointestinal tract before they've finished dispensing their medication.

"Normal constriction and relaxation of GI tract muscles make it impossible for extended-release drugs to stay in the intestine long enough for the patient to receive the full dose," says Selaru, who has collaborated with Gracias for more than 10 years. "We've been working to solve this problem by designing these small drug carriers that can autonomously latch onto the intestinal mucosa and keep the drug load inside the GI tract for a desired duration of time."

Thousands of theragrippers can be deployed in the GI tract. When the paraffin wax coating on the grippers reaches the temperature inside the body, the devices close autonomously and clamp onto the colonic wall. The closing action causes the tiny, six-pointed devices to dig into the mucosa and remain attached to the colon, where they are retained and release their medicine payloads gradually into the body. Eventually, the theragrippers lose their hold on the tissue and are cleared from the intestine via normal gastrointestinal muscular function.

Gracias notes advances in the field of biomedical engineering in recent years.

"We have seen the introduction of dynamic, microfabricated smart devices that can be controlled by electrical or chemical signals," he says. "But these grippers are so small that batteries, antennas and other components will not fit on them."

Theragrippers, says Gracias, don't rely on electricity, wireless signals or external controls. "Instead, they operate like small, compressed springs with a temperature-triggered coating on the devices that releases the stored energy autonomously at body temperature."


Story Source:

Materials provided by Johns Hopkins Medicine. Note: Content may be edited for style and length.


Journal Reference:

  1. Arijit Ghosh, Ling Li, Liyi Xu, Ranjeet P. Dash, Neha Gupta, Jenny Lam, Qianru Jin, Venkata Akshintala, Gayatri Pahapale, Wangqu Liu, Anjishnu Sarkar, Rana Rais, David H. Gracias, Florin M. Selaru. Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Science Advances, 2020; 6 (44): eabb4133 DOI: 10.1126/sciadv.abb4133

Cite This Page:

Johns Hopkins Medicine. "Researchers engineer tiny machines that deliver medicine efficiently." ScienceDaily. ScienceDaily, 3 November 2020. <www.sciencedaily.com/releases/2020/11/201103132738.htm>.
Johns Hopkins Medicine. (2020, November 3). Researchers engineer tiny machines that deliver medicine efficiently. ScienceDaily. Retrieved January 21, 2025 from www.sciencedaily.com/releases/2020/11/201103132738.htm
Johns Hopkins Medicine. "Researchers engineer tiny machines that deliver medicine efficiently." ScienceDaily. www.sciencedaily.com/releases/2020/11/201103132738.htm (accessed January 21, 2025).

Explore More

from ScienceDaily

RELATED STORIES