New! Sign up for our free email newsletter.
Science News
from research organizations

New catalyst recycles greenhouse gases into fuel and hydrogen gas

Date:
February 18, 2020
Source:
The Korea Advanced Institute of Science and Technology (KAIST)
Summary:
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals. The results could be revolutionary in the effort to reverse global warming, according to the researchers.
Share:
FULL STORY

Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals. The results could be revolutionary in the effort to reverse global warming, according to the researchers. The study was published on February 14 in Science.

"We set out to develop an effective catalyst that can convert large amounts of the greenhouse gases carbon dioxide and methane without failure," said Cafer T. Yavuz, paper author and associate professor of chemical and biomolecular engineering and of chemistry at KAIST.

The catalyst, made from inexpensive and abundant nickel, magnesium, and molybdenum, initiates and speeds up the rate of reaction that converts carbon dioxide and methane into hydrogen gas. It can work efficiently for more than a month.

This conversion is called 'dry reforming', where harmful gases, such as carbon dioxide, are processed to produce more useful chemicals that could be refined for use in fuel, plastics, or even pharmaceuticals. It is an effective process, but it previously required rare and expensive metals such as platinum and rhodium to induce a brief and inefficient chemical reaction.

Other researchers had previously proposed nickel as a more economical solution, but carbon byproducts would build up and the surface nanoparticles would bind together on the cheaper metal, fundamentally changing the composition and geometry of the catalyst and rendering it useless.

"The difficulty arises from the lack of control on scores of active sites over the bulky catalysts surfaces because any refinement procedures attempted also change the nature of the catalyst itself," Yavuz said.

The researchers produced nickel-molybdenum nanoparticles under a reductive environment in the presence of a single crystalline magnesium oxide. As the ingredients were heated under reactive gas, the nanoparticles moved on the pristine crystal surface seeking anchoring points. The resulting activated catalyst sealed its own high-energy active sites and permanently fixed the location of the nanoparticles -- meaning that the nickel-based catalyst will not have a carbon build up, nor will the surface particles bind to one another.

"It took us almost a year to understand the underlying mechanism," said first author Youngdong Song, a graduate student in the Department of Chemical and Biomolecular Engineering at KAIST. "Once we studied all the chemical events in detail, we were shocked."

The researchers dubbed the catalyst Nanocatalysts on Single Crystal Edges (NOSCE). The magnesium-oxide nanopowder comes from a finely structured form of magnesium oxide, where the molecules bind continuously to the edge. There are no breaks or defects in the surface, allowing for uniform and predictable reactions.

"Our study solves a number of challenges the catalyst community faces," Yavuz said. "We believe the NOSCE mechanism will improve other inefficient catalytic reactions and provide even further savings of greenhouse gas emissions."

This work was supported, in part, by the Saudi-Aramco-KAIST CO2 Management Center and the National Research Foundation of Korea.

Other contributors include Ercan Ozdemir, Sreerangappa Ramesh, Aldiar Adishev, and Saravanan Subramanian, all of whom are affiliated with the Graduate School of Energy, Environment, Water and Sustainability at KAIST; Aadesh Harale, Mohammed Albuali, Bandar Abdullah Fadhel, and Aqil Jamal, all of whom are with the Research and Development Center in Saudi Arabia; and Dohyun Moon and Sun Hee Choi, both of whom are with the Pohang Accelerator Laboratory in Korea. Ozdemir is also affiliated with the Institute of Nanotechnology at the Gebze Technical University in Turkey; Fadhel and Jamal are also affiliated with the Saudi-Armco-KAIST CO2 Management Center in Korea.


Story Source:

Materials provided by The Korea Advanced Institute of Science and Technology (KAIST). Note: Content may be edited for style and length.


Journal Reference:

  1. Youngdong Song, Ercan Ozdemir, Sreerangappa Ramesh, Aldiar Adishev, Saravanan Subramanian, Aadesh Harale, Mohammed Albuali, Bandar Abdullah Fadhel, Aqil Jamal, Dohyun Moon, Sun Hee Choi, Cafer T. Yavuz. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science, 2020; 367 (6479): 777 DOI: 10.1126/science.aav2412

Cite This Page:

The Korea Advanced Institute of Science and Technology (KAIST). "New catalyst recycles greenhouse gases into fuel and hydrogen gas." ScienceDaily. ScienceDaily, 18 February 2020. <www.sciencedaily.com/releases/2020/02/200218104741.htm>.
The Korea Advanced Institute of Science and Technology (KAIST). (2020, February 18). New catalyst recycles greenhouse gases into fuel and hydrogen gas. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2020/02/200218104741.htm
The Korea Advanced Institute of Science and Technology (KAIST). "New catalyst recycles greenhouse gases into fuel and hydrogen gas." ScienceDaily. www.sciencedaily.com/releases/2020/02/200218104741.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES