New! Sign up for our free email newsletter.
Science News
from research organizations

AI-powered tool predicts cell behaviors during disease and treatment

Date:
July 29, 2019
Source:
Helmholtz Zentrum München - German Research Center for Environmental Health
Summary:
Scientists have developed a tool that promises to reshape the way we study disease and disease treatment on a cellular level. Scientists have developed scGen, an AI-powered tool for predicting a cell's behavior in silico. scGen will help map and study cellular response to disease and treatment beyond experimentally available data.
Share:
FULL STORY

Large-scale atlases of organs in a healthy state are soon going to be available, in particular, within the Human Cell Atlas. This is a significant step in better understanding cells, tissues and organs in healthy state and provides a reference when diagnosing, monitoring, and treating disease. However, due to the sheer number of possible combinations of treatment and disease conditions, expanding these data to characterize disease and disease treatment in traditional life science laboratories is labor intensive and costly and, hence, not scalable.

Accurately modeling cellular response to perturbations (e.g. disease, compounds, genetic interventions) is a central goal of computational biology. Although models based on statistical and mechanistic approaches exist, no machine-learning based solution viable for unobserved, high-dimensional phenomena has yet been available. In addition, scGen is the first tool that predicts cellular response out-of-sample. This means that scGen, if trained on data that capture the effect of perturbations for a given system, is able to make reliable predictions for a different system. "For the first time, we have the opportunity to use data generated in one model system such as mouse and use the data to predict disease or therapy response in human patients," said Mohammad Lotfollahi, PhD student (Helmholtz Zentrum München and Technische Universität München).

scGen is a generative deep learning model that leverages ideas from image, sequence and language processing, and, for the first time, applies these ideas to model the behavior of a cell in silico. The next step for the team concerns the improving scGen to a fully data-driven formulation, increasing its predictive power to enable the study of combinations of perturbations. "We can now start optimizing scGen to answer more and more complex questions about diseases," said Alex Wolf, Team Leader, and Fabian Theis, Director of the Institute of Computational Biology and Chair of Mathematical Modeling of Biological Systems at Technische Universität München.


Story Source:

Materials provided by Helmholtz Zentrum München - German Research Center for Environmental Health. Note: Content may be edited for style and length.


Journal Reference:

  1. Lotfollahi, M. et al. scGen predicts single-cell perturbation responses. Nature Methods, 2019 DOI: 10.1038/s41592-019-0494-8

Cite This Page:

Helmholtz Zentrum München - German Research Center for Environmental Health. "AI-powered tool predicts cell behaviors during disease and treatment." ScienceDaily. ScienceDaily, 29 July 2019. <www.sciencedaily.com/releases/2019/07/190729111330.htm>.
Helmholtz Zentrum München - German Research Center for Environmental Health. (2019, July 29). AI-powered tool predicts cell behaviors during disease and treatment. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2019/07/190729111330.htm
Helmholtz Zentrum München - German Research Center for Environmental Health. "AI-powered tool predicts cell behaviors during disease and treatment." ScienceDaily. www.sciencedaily.com/releases/2019/07/190729111330.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES