New! Sign up for our free email newsletter.
Science News
from research organizations

When sequencing fails to pinpoint a rare disease

Combining proteomics, genomics improves diagnostic accuracy for congenital neutropenia

Date:
February 8, 2019
Source:
American Society for Biochemistry and Molecular Biology
Summary:
Genomics fails to diagnose up to half of patients who are tested. Using a new neutrophil proteome database, researchers made genetic diagnoses for children with severe congenital neutropenia whom typical sequencing had failed.
Share:
FULL STORY

Routine sequencing has given unprecedented insight into the genetics of rare diseases, but genomics fails to diagnose up to half of patients who are tested. That's the problem German scientists tackled in a recent study in the journal Molecular & Cellular Proteomics. Using samples from patients in four countries, and a novel database on the neutrophil proteome, they were able to make genetic diagnoses for two children with severe congenital neutropenia whom typical sequencing had failed.

"There are very few examples of people who use multiple '-omics' to investigate rare diseases ... (but) I think this is the future of personalized medicine," said senior author Christoph Klein, a physician and the director of the Children's Hospital of the University of Munich.

The patients' disease affects their neutrophils, white blood cells packed with toxic proteins to deploy against bacteria. When neutrophil development is disrupted, which Klein estimates happens to 1 in 200,000 newborns, every bacterial or fungal infection can become a life-threatening medical emergency.

Neutrophils are fragile, which makes them difficult to study. Postdoctoral researcher Sebastian Hesse developed a protocol to collect proteins from healthy neutrophils. Then scientists led by Piotr Grabowski in Juri Rappsilber's proteomics lab at the Technical University of Berlin used those healthy cells to establish a baseline neutrophil proteome.

Then, Hesse collected neutrophils from 16 patients with congenital neutropenia. Some of them lived in Germany; to reach others, he had to travel as far as Turkey and Iran. Mass spectrometrists repeated the same proteomic assay to compare patients' neutrophils to volunteers'.

The team used abnormal protein profiles to diagnose two patients with inconclusive exome sequencing results. In one child's case, a pseudogene made it difficult to identify mutations in the protein-coding gene; in the second, incomplete coverage by exome sequencing had missed a key point mutation. Data on protein abundance in each patient led the researchers to run secondary genetic analyses that proved conclusive.

Both of these mutations are known causes of neutropenia. "This highlights (that) even if you have highly controlled pipelines for genetic studies, there's always a risk that you are not 100 percent correct," said Klein. In a forthcoming paper the team will report on novel genetic causes for neutropenia found using the proteogenomic technique.

Combined proteomic and genomic screening is not yet practical for every patient. "But, if you look at the machines that are currently being developed, I think there will be huge potential for proteome analysis at a very low cost down the road," Klein said.

This research was supported by the German Research Foundation, German Network on Primary Immunodeficiency Diseases, the Care-for-Rare Foundation, and the Wellcome Trust.

Other authors include Sebastian Hollizeck, Meino Rohlfs, Uta Behrends, Roya Sherkat, Hannah Tamary, Ekrem Ünal, Raz Somech, Türkan Pat?ro?lu, Stefan Canzar, and Jutte van der Werff Ten Bosch.


Story Source:

Materials provided by American Society for Biochemistry and Molecular Biology. Note: Content may be edited for style and length.


Journal Reference:

  1. Piotr Grabowski, Sebastian Hesse, Sebastian Hollizeck, Meino Rohlfs, Uta Behrends, Roya Sherkat, Hannah Tamary, Ekrem Ünal, Raz Somech, Türkan Patıroğlu, Stefan Canzar, Jutte van der Werff Ten Bosch, Christoph Klein, Juri Rappsilber. Proteome analysis of human neutrophil granulocytes from patients with monogenic disease using data-independent acquisition. Molecular & Cellular Proteomics, 2019; mcp.RA118.001141 DOI: 10.1074/mcp.RA118.001141

Cite This Page:

American Society for Biochemistry and Molecular Biology. "When sequencing fails to pinpoint a rare disease." ScienceDaily. ScienceDaily, 8 February 2019. <www.sciencedaily.com/releases/2019/02/190208115325.htm>.
American Society for Biochemistry and Molecular Biology. (2019, February 8). When sequencing fails to pinpoint a rare disease. ScienceDaily. Retrieved November 17, 2024 from www.sciencedaily.com/releases/2019/02/190208115325.htm
American Society for Biochemistry and Molecular Biology. "When sequencing fails to pinpoint a rare disease." ScienceDaily. www.sciencedaily.com/releases/2019/02/190208115325.htm (accessed November 17, 2024).

Explore More

from ScienceDaily

RELATED STORIES