New! Sign up for our free email newsletter.
Science News
from research organizations

A computational analysis identifies a new clinical phenotype of severe malaria

The results of the study could help reduce malaria-associated mortality

Date:
August 31, 2018
Source:
Barcelona Institute for Global Health (ISGlobal)
Summary:
There are more clinical phenotypes of severe malaria than those defined by the World Health Organization (WHO), according to a new study. The results indicate that heart failure can be a pathogenic mechanism of disease, which has implications in the clinical management of these patients.
Share:
FULL STORY

There are more clinical phenotypes of severe malaria than those defined by the World Health Organization (WHO), according to a study led by ISGlobal, an institution supported by "la Caixa" Foundation. The results indicate that heart failure can be a pathogenic mechanism of disease, which has implications in the clinical management of these patients.

Despite the progress achieved over the last decades, malaria is estimated to have caused almost half a million deaths in 2016, mostly among children. The definition of severe malaria was established to identify those children at risk of dying, but in reality it is a complex and heterogeneous disease that not always responds to the recommended treatments.

The team led by Climent Casals-Pascual, researcher at ISGlobal and at Oxford University, applied a computational analysis based on networks in order to identify biologically relevant phenotypes apart from those currently defined by the WHO (cerebral malaria, respiratory distress, and severe malarial anaemia). For this, they performed a 'network-based clustering analysis' with data from almost 3,000 Gambian children hospitalized with malaria. They found that the mortality was higher in those clusters with higher phenotypic heterogeneity. The analysis revealed four clusters of patients with both respiratory distress and severe anaemia, in which an increase in liver size was associated with higher mortality. By analysing plasma proteins of these patients, they showed that this is likely due to heart failure.

"Our results indicate that heart failure should be reconsidered as a pathogenic mechanism in severe malaria," explains Casals-Pascual, "and that therefore the standard clinical management may not be appropriate for these patients." This type of "systems approach" can be a very valuable tool to identify new phenotypes and mechanisms as well as therapeutic options for complex diseases," he adds.


Story Source:

Materials provided by Barcelona Institute for Global Health (ISGlobal). Note: Content may be edited for style and length.


Journal Reference:

  1. Ornella Cominetti, David Smith, Fred Hoffman, Muminatou Jallow, Marie L. Thézénas, Honglei Huang, Dominic Kwiatkowski, Philip K. Maini, Climent Casals-Pascual. Identification of a Novel Clinical Phenotype of Severe Malaria using a Network-Based Clustering Approach. Scientific Reports, 2018; 8 (1) DOI: 10.1038/s41598-018-31320-w

Cite This Page:

Barcelona Institute for Global Health (ISGlobal). "A computational analysis identifies a new clinical phenotype of severe malaria." ScienceDaily. ScienceDaily, 31 August 2018. <www.sciencedaily.com/releases/2018/08/180831110345.htm>.
Barcelona Institute for Global Health (ISGlobal). (2018, August 31). A computational analysis identifies a new clinical phenotype of severe malaria. ScienceDaily. Retrieved December 20, 2024 from www.sciencedaily.com/releases/2018/08/180831110345.htm
Barcelona Institute for Global Health (ISGlobal). "A computational analysis identifies a new clinical phenotype of severe malaria." ScienceDaily. www.sciencedaily.com/releases/2018/08/180831110345.htm (accessed December 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES