New! Sign up for our free email newsletter.
Science News
from research organizations

A nanophenomenon that triggers the bone-repair process

Date:
January 20, 2018
Source:
Universitat Autonoma de Barcelona
Summary:
Researchers have resolved one of the great unknowns in bone self-repair: how the cells responsible for forming new bone tissue are called into action. Their work reveals the role of an electromechanical phenomenon at the nanoscale, flexoelectricity, as a possible mechanism for stimulating the cell response and guiding it throughout the fracture repair process.
Share:
FULL STORY

Researchers at the Institut Català de Nanociència i Nanotecnologia (ICN2), a Severo Ochoa research centre located in the Universitat Autònoma de Barcelona (UAB) Campus and member of the Barcelona Institute of Science and Technology (BIST), have discovered that bone too is flexoelectric. They posit the possible role of flexoelectricity in the regeneration of bone tissue in and around the kind of microfractures incurred in bones on a daily basis. The ICN2 Oxide Nanophysics Group led by ICREA Prof. Gustau Catalan reports these findings today in Advanced Materials, with lead author Fabián Vásquez-Sancho. The work has potential implications for the prosthetics industry and the development of biomimetic self-healing materials.

Bones were already known to generate electricity under pressure, stimulating self-repair and remodelling. First reported in the late fifties, this was initially attributed to the piezoelectricity of bone's organic component, collagen. However, studies have since observed markers of bone repair in the absence of collagen, suggesting that other effects are at play. In this work ICN2 researchers have revealed just such an effect: the flexoelectricity of bone's mineral component.

Flexoelectricity is a property of some materials that causes them to emit a small voltage upon application of a non-uniform pressure. This response is extremely localised, becoming weaker as you move away from the point of maximum stress. In microfractures it is localised to the leading edge or tip of the crack, an atomically small site that, by definition, concentrates the maximum strain a material is able to withstand before full rupture. The result is a flexoelectric field of such magnitude that, in the immediate vicinity of the crack, it eclipses any background collagen piezoelectric effect.

By studying strain gradients in bones and pure bone mineral (hydroxyapatite), the researchers have been able to calculate the precise magnitude of this electric field. Their findings indicate that it is sufficiently large within the required 50 microns of the crack tip to be sensed by the cells responsible for bone repair, directly implicating flexoelectricity in this process.

Furthermore, since the cells responsible for synthesising new bone tissue (osteoblasts) are known to attach close to the tip, it would appear that the electric field distribution signals this point as the centre of damage, becoming a moving beacon for repair efforts as the crack is healed.

These results hold promise for the prosthetics industry, where new materials that reproduced or amplified this flexoelectric effect could be used to guide tissue regeneration, leading to a more successful assimilation of implants.


Story Source:

Materials provided by Universitat Autonoma de Barcelona. Note: Content may be edited for style and length.


Journal Reference:

  1. Fabian Vasquez-Sancho, Amir Abdollahi, Dragan Damjanovic, Gustau Catalan. Flexoelectricity in Bones. Advanced Materials, 2018; 1705316 DOI: 10.1002/adma.201705316

Cite This Page:

Universitat Autonoma de Barcelona. "A nanophenomenon that triggers the bone-repair process." ScienceDaily. ScienceDaily, 20 January 2018. <www.sciencedaily.com/releases/2018/01/180120122710.htm>.
Universitat Autonoma de Barcelona. (2018, January 20). A nanophenomenon that triggers the bone-repair process. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2018/01/180120122710.htm
Universitat Autonoma de Barcelona. "A nanophenomenon that triggers the bone-repair process." ScienceDaily. www.sciencedaily.com/releases/2018/01/180120122710.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES