Stopping dengue fever with bacteria and math
- Date:
- August 29, 2011
- Source:
- University of Chicago Press Journals
- Summary:
- It may be possible to eliminate the deadly dengue fever by infecting mosquitoes with a bacterium called Wolbachia that prevents the mosquitoes from transmitting the dengue virus to humans. A new mathematical model may be helpful in getting the bacteria established in mosquito populations.
- Share:
It may be possible to eliminate the deadly dengue fever by infecting mosquitoes with a bacterium called Wolbachia that prevents the mosquitoes from transmitting the dengue virus to humans. A new mathematical model, developed by Nick Barton (Institute of Science and Technology, Austria) and Michael Turelli (University of California, Davis), may be helpful in getting the bacteria established in mosquito populations.
"Mathematical analyses are central to successfully deploying this novel method of disease control," said Turelli, who is a co-primary investigator on the Eliminate Dengue Program. "Our analysis describes the conditions that allow researchers to initiate spreading waves, approximate the expected wave speed, and describe conditions -- specifically, variation in population density -- that will halt their spread."
The model predicts that releases of dengue-blocking bacteria over roughly one square kilometer should suffice to initiate a traveling wave of mosquito infection in urban areas. The first successful field release of Wolbachia in Australia are reported in the current issue of Nature.
The research appears in the September 2011 issue of the The American Naturalist, published by The University of Chicago Press for The American Society of Naturalists.
Story Source:
Materials provided by University of Chicago Press Journals. Note: Content may be edited for style and length.
Journal Reference:
- N. H. Barton, Michael Turelli. Spatial Waves of Advance with Bistable Dynamics: Cytoplasmic and Genetic Analogues of Allee Effects. The American Naturalist, 2011; 178 (3): E48 DOI: 10.1086/661246
Cite This Page: