New! Sign up for our free email newsletter.
Science News
from research organizations

Scientists solving meteorological mysteries on Mars

Groundbreaking new paper answers key climate questions

Date:
December 19, 2024
Source:
University of Houston
Summary:
Scientists are changing our understanding of climate and weather on Mars and providing critical insights into Earth's atmospheric processes as well.
Share:
FULL STORY

A groundbreaking achievement by scientists at the University of Houston is changing our understanding of climate and weather on Mars and providing critical insights into Earth's atmospheric processes as well.

The study, led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics, under the guidance of his advisors, Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and several planetary scientists, generated the first-ever meridional profile of Mars' radiant energy budget, or REB, which represents the balance or imbalance between absorbed solar energy and emitted thermal energy across the latitudes. On a global scale, an energy surplus leads to global warming, while a deficit results in global cooling. Furthermore, the meridional profile of Mars' REB fundamentally influences weather and climate patterns on the red planet.

The findings are in a new paper just published in AGU Advances and will be featured in AGU's science magazine EOS.

"The work in establishing Mars' first meridional radiant energy budget profile is noteworthy," Guan said. "Understanding Earth's large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology."

The profile, based on long-term observations from orbiting spacecraft, offers a detailed comparison of Mars' REB to that of Earth, uncovering striking differences in the way each planet receives and radiates energy. While Earth exhibits an energy surplus in the tropics and a deficit in the polar regions, Mars displays the opposite configuration.

"On Earth, the tropical energy surplus drives warming and upward atmospheric motion, while the polar energy deficit causes cooling and downward atmospheric motion," Jiang explained. "These atmospheric motions significantly influence weather and climate on our home planet. However, on Mars, we observe a polar energy surplus and a tropical energy deficit."

That surplus, Guan says, is especially pronounced in Mars' southern hemisphere during spring, playing a critical role in driving the planet's atmospheric circulation and triggering global dust storms, the most prominent feature of Martian weather. These massive storms, which can envelop the entire planet, significantly alter the distribution of energy, providing a dynamic element that affects Mars' weather patterns and climate.

"The interaction between dust storms and the REB, as well as with polar ice dynamics, brings to light the complex feedback processes that likely shape Martian weather patterns and long-term climate stability," Guan said.

Earth's global-scale energy imbalance has been recently discovered, which significantly contributes to global warming at a magnitude comparable to that caused by increasing greenhouse gases. Mars presents a distinct environment due to its thinner atmosphere and lack of anthropogenic effects. The research team is now examining potential long-term energy imbalances on Mars and their implications for the planet's climate evolution.

"The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars' climate dynamics," Li said. "This research not only deepens our knowledge of the red planet but also provides critical insights into planetary atmospheric processes."


Story Source:

Materials provided by University of Houston. Original written by Bryan Luhn. Note: Content may be edited for style and length.


Journal Reference:

  1. Larry Guan, Liming Li, Ellen C. Creecy, Xun Jiang, Xinyue Wang, Germán Martínez, Anthony D. Toigo, Mark I. Richardson, Agustín Sánchez‐Lavega, Yeon Joo Lee. Distinct Energy Budgets of Mars and Earth. AGU Advances, 2024; 5 (6) DOI: 10.1029/2024AV001389

Cite This Page:

University of Houston. "Scientists solving meteorological mysteries on Mars." ScienceDaily. ScienceDaily, 19 December 2024. <www.sciencedaily.com/releases/2024/12/241219151912.htm>.
University of Houston. (2024, December 19). Scientists solving meteorological mysteries on Mars. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2024/12/241219151912.htm
University of Houston. "Scientists solving meteorological mysteries on Mars." ScienceDaily. www.sciencedaily.com/releases/2024/12/241219151912.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES