New! Sign up for our free email newsletter.
Science News
from research organizations

An evolutionary mystery 125 million years in the making

Date:
March 4, 2024
Source:
Cold Spring Harbor Laboratory
Summary:
Plant biologists have uncovered an evolutionary mystery over 100 million years in the making. It turns out that sometime during the last 125 million years, tomatoes and Arabidopsis thaliana plants experienced an extreme genetic makeover. Just what happened remains unclear. But the mystery surrounds CLV3, a gene key to healthy plant growth and development.
Share:
FULL STORY

Plant genomics has come a long way since Cold Spring Harbor Laboratory (CSHL) helped sequence the first plant genome. But engineering the perfect crop is still, in many ways, a game of chance. Making the same DNA mutation in two different plants doesn't always give us the crop traits we want. The question is why not? CSHL plant biologists just dug up a reason.

CSHL Professor and HHMI Investigator Zachary Lippman and his team discovered that tomato and Arabidopsis thaliana plants can use very different regulatory systems to control the same exact gene. Incredibly, they linked this behavior to extreme genetic makeovers that occurred over 125 million years of evolution.

The scientists used genome editing to create over 70 mutant strains of tomato and Arabidopsis thaliana plants. Each mutation deleted a piece of regulatory DNA around a gene known as CLV3. They then analyzed the effect each mutation had on plant growth and development. When the DNA keeping CLV3 in check was mutated too much, fruit growth exploded.

Danielle Ciren, a recent CSHL School of Biological Sciences graduate who led this study, explains, "CLV3 helps plants develop normally. If it wasn't turned on at the exact time that it is, then plants would look very different. All the fruits would be ginormous and not ideal. You have to balance growth and yield. If a plant has giant tomatoes but only two, is that as beneficial as a lower yield? There's no simple solution. You're always sacrificing something when you're trying to get something improved."

For tomatoes, engineering mutations near the beginning but not the end of the CLV3 gene dramatically affected fruit size. For Arabidopsis, areas around both parts of the gene needed to be disrupted. This indicates something happened over the last 125 million years that made the plants evolve differently. Exactly what occurred remains a mystery.

"You can't go back to the common ancestor because they don't exist anymore. So it's hard to say what was the original state and how have things been mixed up," says Ciren. "The most simple explanation is that there's a regulatory element that's conserved in some capacity, and it's been altered in subtle ways. It is a bit unexpected."

What is certain is that genetic regulation is not uniform between plant species. Unearthing these genetic differences could help make crop genome engineering more predictable. And that would be a big win not just for science but for farmers and plant breeders across the globe.


Story Source:

Materials provided by Cold Spring Harbor Laboratory. Original written by Luis Sandoval. Note: Content may be edited for style and length.


Journal Reference:

  1. Danielle Ciren, Sophia Zebell, Zachary B. Lippman. Extreme restructuring of cis-regulatory regions controlling a deeply conserved plant stem cell regulator. PLOS Genetics, 2024; 20 (3): e1011174 DOI: 10.1371/journal.pgen.1011174

Cite This Page:

Cold Spring Harbor Laboratory. "An evolutionary mystery 125 million years in the making." ScienceDaily. ScienceDaily, 4 March 2024. <www.sciencedaily.com/releases/2024/03/240304143643.htm>.
Cold Spring Harbor Laboratory. (2024, March 4). An evolutionary mystery 125 million years in the making. ScienceDaily. Retrieved December 20, 2024 from www.sciencedaily.com/releases/2024/03/240304143643.htm
Cold Spring Harbor Laboratory. "An evolutionary mystery 125 million years in the making." ScienceDaily. www.sciencedaily.com/releases/2024/03/240304143643.htm (accessed December 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES