New! Sign up for our free email newsletter.
Science News
from research organizations

Student researchers improve coral restoration efforts

Date:
March 24, 2022
Source:
University of Hawaii at Manoa
Summary:
A recent study revealed that exposing rice coral larvae to warmer temperatures did not improve survival once the coral developed into juveniles and were exposed to heat stress.
Share:
FULL STORY

A study published recently in Coral Reefs and led by University of Hawai'i (UH) at Mānoa student researchers revealed that exposing rice coral larvae to warmer temperatures did not improve survival once the coral developed into juveniles and were exposed to heat stress.

Climate change-induced ocean warming has reshaped reef ecosystems as coral bleaching events continue to lead to mass coral die-offs globally. Coral restoration efforts in Hawai'i are vast and include selectively breeding more resilient coral, active management of vulnerable areas and outplanting coral reared in a lab.

Shayle Matsuda and Ariana Huffmyer, marine biology graduate students in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST), were on a mission to optimize efforts to restore corals. While at the Inclusive Science Communication Symposium, Matsuda met Gyasi Alexander, undergraduate student at the University of Rhode Island, and invited him to participate in a summer internship at the Hawai'i Institute of Marine Biology (HIMB) in SOEST.

Making the most of restoration efforts

The team's approach was to start with gametes collected during mass spawning events and rear them to the larval stage, with the long term goal of planting more coral on the reef.

"Although this process can provide more genetic diversity to the reef than fragmentation practices alone, it takes considerable time, effort and capital, and the downstream survival of the corals may be impacted by ocean warming events," said Matsuda who is now a postdoctoral fellow at the Shedd Aquarium. "With this study, we wanted to test whether exposing larvae to different temperatures would both increase larval survival and settlement, and importantly, if exposure to elevated temperatures as larvae would lead to increased thermal tolerance, that is, higher survival, at the juvenile stage."

"However, we do not have a good understanding of the degree, time, and profile of stress required to produce positive carry over effects and, if the effects are produced, how long they last," added Huffmyer, now at the University of Rhode Island.

In their experiments, the researchers, including HIMB coral ecologist Josh Hancock, found that elevating temperature to simulate future ocean warming did not improve larval survival and did not improve survival after larvae settled on the seafloor. Instead, their results suggest that rearing rice coral at ambient temperatures maximizes early life stage survival.

"As climate change intensifies, it is critical that we focus our restoration and conservation strategies that will have the greatest positive impact," said Huffmyer. "Since we found that thermal conditioning did not provide positive benefits for thermal tolerance in recruits in this species, we suggest that our time and resources are best spent pursuing other avenues of thermal conditioning and further testing thermal conditioning scenarios that may produce positive impacts."

Impact of hands-on research experience

"Prior to this experience, I hadn't really known what it felt like to think like a scientist," said Alexander. "The idea of research was definitely intimidating. Ariana and Shayle helped me immensely by encouraging me to share the observations and questions that I had, even when I was afraid to use my voice. That comfortability helped me to realize that thinking like a scientist, feeling like a scientist is really just pursuing the curiosity you feel behind what you see and take in, especially when you don't have all the answers right away."

After completing his summer internship at HIMB, Alexander has a clearer direction for his own graduate school pursuits.

"My current goal is to develop a skillset in big data," said Alexander. "I reflected on my work on HIMB and realized how much more effective I could have been if I had a more robust set of data analysis skills. So among my next moves, I plan to learn a few programming languages like R and Python to aid my work in the future and


Story Source:

Materials provided by University of Hawaii at Manoa. Original written by Marcie Grabowski. Note: Content may be edited for style and length.


Journal Reference:

  1. Gyasi Alexander, Joshua R. Hancock, Ariana S. Huffmyer, Shayle B. Matsuda. Larval thermal conditioning does not improve post-settlement thermal tolerance in the dominant reef-building coral, Montipora capitata. Coral Reefs, 2022; DOI: 10.1007/s00338-022-02234-x

Cite This Page:

University of Hawaii at Manoa. "Student researchers improve coral restoration efforts." ScienceDaily. ScienceDaily, 24 March 2022. <www.sciencedaily.com/releases/2022/03/220324104511.htm>.
University of Hawaii at Manoa. (2022, March 24). Student researchers improve coral restoration efforts. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2022/03/220324104511.htm
University of Hawaii at Manoa. "Student researchers improve coral restoration efforts." ScienceDaily. www.sciencedaily.com/releases/2022/03/220324104511.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES