New! Sign up for our free email newsletter.
Science News
from research organizations

To understand the future of hurricanes, look to the past

Researchers improve hurricane modeling by correcting for past sea surface temperatures

Date:
June 29, 2021
Source:
Harvard John A. Paulson School of Engineering and Applied Sciences
Summary:
New research highlights the importance of understanding sea surface temperatures patterns in predicting future hurricane frequency.
Share:
FULL STORY

The historic 2020 hurricane season, with its record-breaking 30 tropical storms and hurricanes, left in its wake hundreds of deaths in the United States, tens of billions of dollars in damages, and one important question: Is this what the future will look like?

While most climate scientists agree that hurricane severity, at least in terms of rainfall, will likely increase as the planet warms, there remains uncertainty about the future frequency of hurricanes. Today's climate models offer a range of possible futures, some predicting an increase in North Atlantic hurricane frequency, others a decrease. These conflicting results beg the question: are these models even capable of predicting hurricane frequency or are they missing some vital process?

"In order to understand whether these models are credible we need to see if they can reproduce the past," said Peter Huybers, Professor of Earth and Planetary Sciences and of Environmental Science and Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). "Today's models do a good job simulating the past 40 years of hurricanes but as we move back in time, the models and data increasingly diverge. This raises an important question: if models do not reproduce the long-term history of hurricanes, should we trust their long-term predictions?"

In a new paper published in Science Advances, Huybers and a team of researchers found that these models are, in fact, capable of reproducing the long-term history of hurricanes -- but only if historic sea surface temperatures are corrected. The research highlights the importance of understanding sea surface temperatures patterns and suggests that a better understanding of these patterns could reconcile conflicting model predictions and improve our understanding of how climate change will impact future hurricane frequency.

This paper builds off previous research in which Huybers and his team identified bias in historic sea surface temperature measurements and developed a comprehensive approach to correct the data. That paper, published in 2019, led to a better understanding of how oceans warmed over time. Here, the researchers apply the same correction to help model historic hurricane frequency.

Sea surface temperature plays a critical role in the formation of hurricanes.

"The frequency of Atlantic hurricanes depends on the pattern of sea surface temperatures, particularly the warmth of the subtropical North Atlantic, an area that roughly extends from the tip of Florida to Cape Verde, relative to the tropical oceans as a whole," said Duo Chan, a former graduate student at SEAS and first author of the paper.

When the subtropical North Atlantic is relatively warm, it leads to more atmospheric convection and more Atlantic hurricanes. When the subtropical North Atlantic is relatively cool, hurricane formation rates decrease, in part because of winds that shear apart proto-storm systems.

When today's climate models try to reproduce past hurricane seasons, they generally predict too few between 1885-1900 and too many between 1930-1960. These models, however, all rely upon historic sea surface temperatures that indicate a relative cool subtropical Atlantic at the turn of the 20th century and a warm Atlantic in the mid-20th century.

But, as Huybers and Chan demonstrated in previous research, those historic sea surface temperatures contain systematic errors. Their corrected sea surface temperatures show a warmer subtropical North Atlantic from 1885 to 1920 and a relatively cooler one between 1930 and 1960. These adjustments bring hurricane frequency in line with observations.

"Our corrections to sea surface temperature patterns were independently developed, and significantly improve the skill with which models reproduce historical hurricane variations," said Huybers. "These results increase our confidence both in historical sea surface temperatures and our models and provide a more-firm basis from which to explore how climate change will influence hurricane frequency going forward."

The research was co-authored by Gabriel A. Vecchi and Wenchang Yang of Princeton University, and was partly supported by the Harvard Global Institute.


Story Source:

Materials provided by Harvard John A. Paulson School of Engineering and Applied Sciences. Note: Content may be edited for style and length.


Journal Reference:

  1. Duo Chan, Gabriel A. Vecchi, Wenchang Yang, Peter Huybers. Improved simulation of 19th- and 20th-century North Atlantic hurricane frequency after correcting historical sea surface temperatures. Science Advances, 2021; 7 (26): eabg6931 DOI: 10.1126/sciadv.abg6931

Cite This Page:

Harvard John A. Paulson School of Engineering and Applied Sciences. "To understand the future of hurricanes, look to the past." ScienceDaily. ScienceDaily, 29 June 2021. <www.sciencedaily.com/releases/2021/06/210629161332.htm>.
Harvard John A. Paulson School of Engineering and Applied Sciences. (2021, June 29). To understand the future of hurricanes, look to the past. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2021/06/210629161332.htm
Harvard John A. Paulson School of Engineering and Applied Sciences. "To understand the future of hurricanes, look to the past." ScienceDaily. www.sciencedaily.com/releases/2021/06/210629161332.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES