New! Sign up for our free email newsletter.
Science News
from research organizations

Offshore submarine freshwater discovery raises hopes for islands worldwide

Date:
November 25, 2020
Source:
University of Hawaii at Manoa
Summary:
Twice as much freshwater is stored offshore of Hawai'i Island than previously thought, revealed a new study with important implications for volcanic islands around the world. An extensive reservoir of freshwater within the submarine southern flank of the Hualalai aquifer was mapped by researchers with Hawai'i EPSCoR 'Ike Wai project, showing a way in which substantial volumes of freshwater are transported from onshore to offshore submarine aquifers along the coast of Hawai'i Island.
Share:
FULL STORY

Twice as much freshwater is stored offshore of Hawai'i Island than was previously thought, according to a University of Hawai'i study with important implications for volcanic islands around the world. An extensive reservoir of freshwater within the submarine southern flank of the Hualālai aquifer has been mapped by UH researchers with the Hawai'i EPSCoR 'Ike Wai project. The groundbreaking findings, published in Science Advances, reveal a novel way in which substantial volumes of freshwater are transported from onshore to offshore submarine aquifers along the coast of Hawai'i Island.

This mechanism may provide alternative renewable resources of freshwater to volcanic islands worldwide. "Their evidence for separate freshwater lenses, stacked one above the other, near the Kona coast of Hawai'i, profoundly improves the prospects for sustainable development on volcanic islands," said UH Manoa School of Ocean and Earth Science and Technology (SOEST) Dean Brian Taylor.

Paradigm shift

Through the use of marine controlled-source electromagnetic imaging, the study revealed the onshore-to-offshore movement of freshwater through a multilayer formation of basalts embedded between layers of ash and soil, diverging from previous groundwater models of this area. Conducted as a part of the National Science Foundation-supported 'Ike Wai project, research affiliate faculty Eric Attias led the marine geophysics campaign.

"Our findings provide a paradigm shift from the conventional hydrologic conceptual models that have been vastly used by multiple studies and water organizations in Hawai'i and other volcanic islands to calculate sustainable yields and aquifer storage for the past 30 years," said Attias. "We hope that our discovery will enhance future hydrologic models, and consequently, the availability of clean freshwater in volcanic islands."

Co-author Steven Constable, a professor of geophysics at the Scripps Institution of Oceanography, who developed the controlled source electromagnetic system used in the project, said, "I have spent my entire career developing marine electromagnetic methods such as the one used here. It is really gratifying to see the equipment being used for such an impactful and important application. Electrical methods have long been used to study groundwater on land, and so it makes sense to extend the application offshore."

Kerry Key, an associate professor at Columbia University who employs electromagnetic methods to image various oceanic Earth structures, who not involved in this study, said, "This new electromagnetic technique is a game changing tool for cost-effective reconnaissance surveys to identify regions containing freshwater aquifers, prior to more expensive drilling efforts to directly sample the pore waters. It can also be used to map the lateral extent of any aquifers already identified in isolated boreholes."

Two-times more water

Donald Thomas, a geochemist with the Hawai'i Institute of Geophysics and Planetology in SOEST who also worked on the study, said the findings confirm two-times the presence of much larger quantities of stored groundwater than previously thought.

"Understanding this new mechanism for groundwater...is important to better manage groundwater resources in Hawai'i," said Thomas, who leads the Humuʻula Groundwater Research project, which found another large freshwater supply on Hawai'i Island several years ago.

Offshore freshwater systems similar to those flanking the Hualālai aquifer are suggested to be present for the island of O'ahu, where the electromagnetic imaging technique has not yet been applied, but, if demonstrated, could provide an overall new concept to manage freshwater resources.

The study proposes that this newly discovered transport mechanism may be the governing mechanism in other volcanic islands. With offshore reservoirs considered more resilient to climate change-driven droughts, volcanic islands worldwide can potentially consider these resources in their water management strategies.

This project is supported by the National Science Foundation EPSCoR Program Award OIA #1557349.


Story Source:

Materials provided by University of Hawaii at Manoa. Note: Content may be edited for style and length.


Journal Reference:

  1. Eric Attias, Donald Thomas, Dallas Sherman, Khaira Ismail and Steven Constable. Marine electrical imaging reveals novel freshwater transport mechanism in Hawai‘i. Science Advances, 2020 DOI: 10.1126/sciadv.abd4866

Cite This Page:

University of Hawaii at Manoa. "Offshore submarine freshwater discovery raises hopes for islands worldwide." ScienceDaily. ScienceDaily, 25 November 2020. <www.sciencedaily.com/releases/2020/11/201125154829.htm>.
University of Hawaii at Manoa. (2020, November 25). Offshore submarine freshwater discovery raises hopes for islands worldwide. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2020/11/201125154829.htm
University of Hawaii at Manoa. "Offshore submarine freshwater discovery raises hopes for islands worldwide." ScienceDaily. www.sciencedaily.com/releases/2020/11/201125154829.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES