New! Sign up for our free email newsletter.
Science News
from research organizations

Environmental conditions found to affect stability of virus that causes COVID-19

Date:
June 19, 2020
Source:
Marshall University Joan C. Edwards School of Medicine
Summary:
A new study found that environmental conditions affect the stability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human nasal mucus and sputum.
Share:
FULL STORY

A new study led by Marshall University researcher M. Jeremiah Matson found that environmental conditions affect the stability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human nasal mucus and sputum.

Matson, the lead author on a study published earlier this month as an early release in Emerging Infectious Diseases, the journal of the Centers for Disease Control and Prevention (CDC), is a student in the combined Doctor of Medicine and Doctor of Philosophy in Biomedical Research program at the Marshall University Joan C. Edwards School of Medicine.

SARS-CoV-2, the virus that causes the disease known as COVID-19, was found to be less stable at higher humidity and warmer temperatures. In the study, SARS-CoV-2 was mixed with human nasal mucus and sputum specimens, which were then exposed to three different sets of temperature and humidity for up to seven days. Samples were collected throughout the study and analyzed for the presence of infectious virus as well as viral RNA alone, which is not infectious. Viral RNA was consistently detectable throughout the seven-day study, while infectious virus was detectable for up to approximately 12-48 hours, depending on the environmental conditions.

"The COVID-19 pandemic has been a sobering reminder that infectious diseases continue to be a major public health threat and require sustained research commitment," Matson said. "While this is a small study that only addresses the potential for fomite [an object that may be contaminated with infectious agents] transmission, which is thought to be less important than droplet transmission for SARS-CoV-2, it nevertheless is informative for public health risk assessment."

In a second study, also released this month in Emerging Infectious Diseases, Matson was part of a team of researchers that evaluated the effectiveness of N95 respirator decontamination and reuse against SARS-CoV-2. Vaporized hydrogen peroxide and ultraviolet light were found to be most effective if proper fit and seal were maintained.

Matson was granted a National Institutes of Health (NIH) Fellows Award for Research Excellence (FARE) 2021 for "scientific merit, originality, experimental design and overall quality and presentation" based on an abstract of the stability work. He is currently performing his dissertation research on Ebola virus at the National Institute of Allergy and Infectious Diseases (NIAID) Virus Ecology Section at Rocky Mountain Laboratories in Montana under the mentorship of Section Chief Vincent Munster, Ph.D.

This research was supported by the Intramural Research Program of the National Institutes of Health, the National Institute of Allergy and Infectious Diseases, and the Defense Advanced Research Projects Agency's Preventing Emerging Pathogenic Threats Program (grant no D18AC00031).


Story Source:

Materials provided by Marshall University Joan C. Edwards School of Medicine. Note: Content may be edited for style and length.


Journal References:

  1. Matson MJ, Kwe Yinda C, Seifert SN, Bushmaker T, Fischer RJ, van Doremalen N, et al. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum. Emerging Infectious Diseases, June 8, 2020; DOI: 10.3201/eid2609.202267
  2. Robert J. Fischer, Dylan H. Morris, Neeltje van Doremalen, Shanda Sarchette, M. Jeremiah Matson, Trenton Bushmaker, Claude Kwe Yinda, Stephanie N. Seifert, Amandine Gamble, Brandi N. Williamson, Seth D. Judson, Emmie de Wit, James O. Lloyd-Smith, Vincent J. Munster. Effectiveness of N95 Respirator Decontamination and Reuse against SARS-CoV-2 Virus. Emerging Infectious Diseases, 2020; 26 (9) DOI: 10.3201/eid2609.201524

Cite This Page:

Marshall University Joan C. Edwards School of Medicine. "Environmental conditions found to affect stability of virus that causes COVID-19." ScienceDaily. ScienceDaily, 19 June 2020. <www.sciencedaily.com/releases/2020/06/200619143435.htm>.
Marshall University Joan C. Edwards School of Medicine. (2020, June 19). Environmental conditions found to affect stability of virus that causes COVID-19. ScienceDaily. Retrieved January 17, 2025 from www.sciencedaily.com/releases/2020/06/200619143435.htm
Marshall University Joan C. Edwards School of Medicine. "Environmental conditions found to affect stability of virus that causes COVID-19." ScienceDaily. www.sciencedaily.com/releases/2020/06/200619143435.htm (accessed January 17, 2025).

Explore More

from ScienceDaily

RELATED STORIES