New! Sign up for our free email newsletter.
Science News
from research organizations

Addressing global warming with new nanoparticles and sunshine

Date:
January 21, 2020
Source:
Institute for Basic Science
Summary:
Harvesting sunlight, IBS scientists reported a new strategy to transform carbon dioxide (CO2) into oxygen (O2) and pure carbon monoxide (CO) without side-products in water. This artificial photosynthesis method could bring new solutions to environmental pollution and global warming.
Share:
FULL STORY

Harvesting sunlight, researchers of the Center for Integrated Nanostructure Physics, within the Institute for Basic Science (IBS, South Korea) published in Materials Today a new strategy to transform carbon dioxide (CO2) into oxygen (O2) and pure carbon monoxide (CO) without side-products in water. This artificial photosynthesis method could bring new solutions to environmental pollution and global warming.

While, in green plants, photosynthesis fixes CO2 into sugars, the artificial photosynthesis reported in this study can convert CO2 into oxygen and pure CO as output. The latter can then be employed for a broad range of applications in electronics, semiconductor, pharmaceutical, and chemical industries. The key is to find the right high-performance photocatalyst to help the photosynthesis take place by absorbing light, convert CO2, and ensuring an efficient flow of electrons, which is essential for the entire system.

Titanium oxide (TiO2) is a well-known photocatalyst. It has already attracted significant attention in the fields of solar energy conversion and environmental protection due to its high reactivity, low toxicity, chemical stability, and low cost. While conventional TiO2 can absorb only UV light, the IBS research team reported previously two different types of blue-colored TiO2 (or "blue titania") nanoparticles that could absorb visible light thanks to a reduced bandgap of about 2.7 eV. They were made of ordered anatase/disordered rutile (Ao/Rd) TiO2 (called, HYL's blue TiO2-I) (Energy & Environmental Science, 2016), and disordered anatase/ordered rutile (Ad/Ro) TiO2 (called, HYL's blue TiO2-II) (ACS Applied Materials & Interfaces, 2019), where anatase and rutile refer to two crystalline forms of TiO2 and the introduction of irregularities (disorder) in the crystal enhances the absorption of visible and infra-red light.

For the efficient artificial photosynthesis for the conversion of CO2 into oxygen and pure CO, IBS researchers aimed to improve the performance of these nanoparticles by combining blue (Ao/Rd) TiO2 with other semiconductors and metals that can enhance water oxidation to oxygen, in parallel to CO2 reduction into CO only. The research team obtained the best results with hybrid nanoparticles made of blue titania, tungsten trioxide (WO3), and 1% silver (TiO2/WO3-Ag). WO3 was chosen because of the low valence band position with its narrow bandgap of 2.6 eV, high stability, and low cost. Silver was added because it enhances visible light absorption, by creating a collective oscillation of free electrons excited by light, and also gives high CO selectivity. The hybrid nanoparticles showed about 200 times higher performance than nanoparticles made of TiO2 alone and TiO2/WO3 without silver.

Starting from water and CO2, this novel hybrid catalyst produced O2 and pure CO, without any side products, such as hydrogen gas (H2) and metane (CH4). The apparent quantum yield that is the ratio of several reacted electrons to the number of incident photons was 34.8 %, and the rate of reacted electrons 2333.44 μmol g−1h−1. The same measurement was lower for nanoparticles without silver (2053.2 μmol g−1h−1), and for nanoparticles with only blue TiO2 (912.4 μmol g−1h−1).


Story Source:

Materials provided by Institute for Basic Science. Note: Content may be edited for style and length.


Journal Reference:

  1. Chau T.K. Nguyen, Ngoc Quang Tran, Sohyeon Seo, Heemin Hwang, Simgeon Oh, Jianmin Yu, Jinsun Lee, Thi Anh Le, Joseph Hwang, Meeree Kim, Hyoyoung Lee. Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO2 with almost complete CO selectivity. Materials Today, 2020; DOI: 10.1016/j.mattod.2019.11.005

Cite This Page:

Institute for Basic Science. "Addressing global warming with new nanoparticles and sunshine." ScienceDaily. ScienceDaily, 21 January 2020. <www.sciencedaily.com/releases/2020/01/200121112930.htm>.
Institute for Basic Science. (2020, January 21). Addressing global warming with new nanoparticles and sunshine. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2020/01/200121112930.htm
Institute for Basic Science. "Addressing global warming with new nanoparticles and sunshine." ScienceDaily. www.sciencedaily.com/releases/2020/01/200121112930.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES