New! Sign up for our free email newsletter.
Science News
from research organizations

Cancer by remote-control: Overlooked DNA shuffling drives deadly paediatric brain tumour

Date:
June 23, 2014
Source:
European Molecular Biology Laboratory
Summary:
One of the deadliest forms of paediatric brain tumor, Group 3 medulloblastoma, is linked to a variety of large-scale DNA rearrangements which all have the same overall effect on specific genes located on different chromosomes. "We were surprised to see that in addition to MYC there are two other major drivers of Group 3 medulloblastoma -- two sister genes called GFI1B and GFI1," says Korbel. "Our findings could be relevant for research on other cancers, as we discovered that those genes had been activated in a way that cancer researchers don't usually look for in solid tumors," researchers remarked.
Share:
FULL STORY

One of the deadliest forms of paediatric brain tumor, Group 3 medulloblastoma, is linked to a variety of large-scale DNA rearrangements which all have the same overall effect on specific genes located on different chromosomes. The finding, by scientists at the European Molecular Biology Laboratory (EMBL), the German Cancer Research Centre (DKFZ), both in Heidelberg, Germany, and Sanford-Burnham Medical Research Institute in San Diego, USA, is published online today in Nature.

To date, the only gene known to play an important role in Group 3 medulloblastoma was a gene called MYC, but that gene alone couldn't explain some of the unique characteristics of this particular type of medulloblastoma, which has a higher metastasis rate and overall poorer prognosis than other types of this childhood brain tumor. To tackle the question, Jan Korbel's group at EMBL and collaborators at DKFZ tried to identify new genes involved, taking advantage of the large number of medulloblastoma genome sequences now known.

"We were surprised to see that in addition to MYC there are two other major drivers of Group 3 medulloblastoma -- two sister genes called GFI1B and GFI1," says Korbel. "Our findings could be relevant for research on other cancers, as we discovered that those genes had been activated in a way that cancer researchers don't usually look for in solid tumors."

Rather than take the usual approach of looking for changes in individual genes, the team focused on large-scale rearrangements of the stretches of DNA that lie between genes. They found that the DNA of different patients showed evidence of different rearrangements: duplications, deletions, inversions, and even complex alterations involving many 'DNA-shuffling' events. This wide array of genetic changes had one effect in common: they placed GFI1B close to highly active enhancers -- stretches of DNA that can dramatically increase gene activity. So large-scale DNA changes relocate GFI1B, activating this gene in cells where it would normally be switched off. And that, the researchers surmise, is what drives the tumor to form.

"Nobody has seen such a process in solid cancers before," says Paul Northcott from DKFZ, "although it shares similarities with a phenomenon implicated in leukaemias, which has been known since the 80s."

GFI1B wasn't affected in all cases studied, but in many patients where it wasn't, a related gene with a similar role, GFI1, was. GFI1B and GFI1 sit on different chromosomes, and interestingly, the DNA rearrangements affecting GFI1 put it next to enhancers sitting on yet other chromosomes. But the overall result was identical: the gene was activated, and appeared to drive tumor formation.

To confirm the role of GFI1B and GFI1 in causing medulloblastoma, the Heidelberg researchers turned to the expertise of Robert Wechsler-Reya's group at Sanford-Burnham. Wechsler-Reya's lab genetically modified neural stem cells to have either GFI1B or GFI1 turned on, together with MYC. When they inserted those modified cells into the brains of healthy mice, the rodents developed aggressive, metastasising brain tumors that closely resemble Group 3 medulloblastoma in humans.

These mice are the first to truly mimic the genetics of the human version of Group 3 medulloblastoma, and researchers can now use them to probe further. The mice could, for instance, be used to test potential treatments suggested by these findings. One interesting option to explore, the scientists say, is that highly active enhancers -- like the ones they found were involved in this tumor -- can be vulnerable to an existing class of drugs called bromodomain inhibitors. And, since neither GFI1B nor GFI1 is normally active in the brain, the study points to possible routes for diagnosing this brain tumor, too.

But the mice also raised another question the scientists are still untangling. For the rodents to develop medulloblastoma-like tumors, activating GFI1 or GFI1B was not enough; MYC also had to be switched on. In human patients, however, scientists have found a statistical link between MYC and GFI1, but not between MYC and GFI1B, so the team is now following up on this partial surprise.

"What we're learning from this study is that clearly one has to think outside the box when trying to understand cancer genomes," Korbel concludes.


Story Source:

Materials provided by European Molecular Biology Laboratory. Note: Content may be edited for style and length.


Journal Reference:

  1. Paul A. Northcott, Catherine Lee, Thomas Zichner, Adrian M. Stütz, Serap Erkek, Daisuke Kawauchi, David J. H. Shih, Volker Hovestadt, Marc Zapatka, Dominik Sturm, David T. W. Jones, Marcel Kool, Marc Remke, Florence M. G. Cavalli, Scott Zuyderduyn, Gary D. Bader, Scott VandenBerg, Lourdes Adriana Esparza, Marina Ryzhova, Wei Wang, Andrea Wittmann, Sebastian Stark, Laura Sieber, Huriye Seker-Cin, Linda Linke, Fabian Kratochwil, Natalie Jäger, Ivo Buchhalter, Charles D. Imbusch, Gideon Zipprich, Benjamin Raeder, Sabine Schmidt, Nicolle Diessl, Stephan Wolf, Stefan Wiemann, Benedikt Brors, Chris Lawerenz, Jürgen Eils, Hans-Jörg Warnatz, Thomas Risch, Marie-Laure Yaspo, Ursula D. Weber, Cynthia C. Bartholomae, Christof von Kalle, Eszter Turányi, Peter Hauser, Emma Sanden, Anna Darabi, Peter Siesjö, Jaroslav Sterba, Karel Zitterbart, David Sumerauer, Peter van Sluis, Rogier Versteeg, Richard Volckmann, Jan Koster, Martin U. Schuhmann, Martin Ebinger, H. Leighton Grimes, Giles W. Robinson, Amar Gajjar, Martin Mynarek, Katja von Hoff, Stefan Rutkowski, Torsten Pietsch, Wolfram Scheurlen, Jörg Felsberg, Guido Reifenberger, Andreas E. Kulozik, Andreas von Deimling, Olaf Witt, Roland Eils, Richard J. Gilbertson, Andrey Korshunov, Michael D. Taylor, Peter Lichter, Jan O. Korbel, Robert J. Wechsler-Reya, Stefan M. Pfister. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014; DOI: 10.1038/nature13379

Cite This Page:

European Molecular Biology Laboratory. "Cancer by remote-control: Overlooked DNA shuffling drives deadly paediatric brain tumour." ScienceDaily. ScienceDaily, 23 June 2014. <www.sciencedaily.com/releases/2014/06/140623092940.htm>.
European Molecular Biology Laboratory. (2014, June 23). Cancer by remote-control: Overlooked DNA shuffling drives deadly paediatric brain tumour. ScienceDaily. Retrieved December 26, 2024 from www.sciencedaily.com/releases/2014/06/140623092940.htm
European Molecular Biology Laboratory. "Cancer by remote-control: Overlooked DNA shuffling drives deadly paediatric brain tumour." ScienceDaily. www.sciencedaily.com/releases/2014/06/140623092940.htm (accessed December 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES