Georgia Tech Microgenerator Can Power Electronics
- Date:
- January 25, 2005
- Source:
- Georgia Institute Of Technology
- Summary:
- It may be tiny, but a new microgenerator developed at Georgia Tech can now produce enough power to run a small electronic device, like a cell phone, and may soon be able to power a laptop.
- Share:
ATLANTA (November 23, 2004) — It may be tiny, but a new microgenerator developed at Georgia Tech can now produce enough power to run a small electronic device, like a cell phone, and may soon be able to power a laptop.
The microgenerator is about 10 millimeters wide, or about the size of a dime. When coupled with a similarly sized gas-fueled microturbine (or jet) engine, the system, called a microengine, has the potential to deliver more energy and last 10 times longer than a conventional battery.
Developed by doctoral candidate David Arnold, postdoctoral fellows Dr. Iulica Zana and Dr. Jin-Woo Park, and Professor Mark Allen, in the School of Electrical and Computer Engineering at Georgia Tech, the microgenerator produces useful amounts of electricity by spinning a small magnet above a mesh of coils fabricated on a chip. The microelectromechanical system (MEMS) was developed in close collaboration with Sauparna Das and Dr. Jeffrey Lang in the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT).
While work has been underway for several years on various microengine concepts, Georgia Tech’s generator has now demonstrated the ability to produce the wattage necessary to power an electronic device, Arnold said.
“We can now get macro-scale power from a micro-scale device,” Arnold added.
This advancement is a key step in microengines someday being incorporated into products and possibly replacing conventional batteries in certain electronics.
“This is an important step in the development of MEMS-based micro-power systems,” Allen said.
The device’s magnet spins at 100,000 revolutions per minute (rpm), much faster than the comparatively sluggish 3,000 rpm of an average car engine. Speed like that is capable of producing 1.1 watts of power, or enough juice to run a cell phone.
If the project reaches its projected goal, it will eventually produce as much as 20 to 50 watts, capable of powering a laptop.
The research is part of a larger project funded by the Army Research Laboratory to create lighter portable power sources to replace the heavy batteries that currently power a soldier’s equipment, such as laptops, radios, and GPS systems. Researchers at the University of Maryland and Clark Atlanta University also collaborate on the project.
Story Source:
Materials provided by Georgia Institute Of Technology. Note: Content may be edited for style and length.
Cite This Page: