New! Sign up for our free email newsletter.
Science News
from research organizations

Vegetation regulates energy exchange in the Arctic

Date:
October 31, 2022
Source:
University of Zurich
Summary:
Global warming is changing the Arctic by causing permafrost thaw, glacier melt, droughts, fires and changes in vegetation. These developments are strongly linked to the energy exchange between land and the atmosphere. Researchers have now shown that different plant communities in the tundra play a key role in this energy exchange but are not taken into account in climate models.
Share:
FULL STORY

Global warming is changing the Arctic by causing permafrost thaw, glacier melt, droughts, fires and changes in vegetation. These developments are strongly linked to the energy exchange between land and the atmosphere. Researchers at the University of Zurich have now shown that different plant communities in the tundra play a key role in this energy exchange but are not taken into account in climate models.

The heat waves that swept across Europe this summer made many people realize how important plants are when it comes to cooling down the environment. But how do the various types of vegetation in the Arctic affect the energy exchange between the Earth's surface and its atmosphere? This is a highly relevant question, since the region has great significance for the climate. The Arctic is warming up at more than twice the rate of the global average leading to thawing permafrost and melting glaciers regionally. Globally, this warming is reflected in consequences far away from the Arctic, for example in cold damage in ecosystems in East Asia.

Similar heat flux difference as between glaciers and grassland

An international team led by two researchers from the Department of Evolutionary Biology and Environmental Studies of the University of Zurich (UZH) has now taken a closer look at the energy budget of the land surface in the Arctic. According to their study, the Arctic's diverse vegetation, which is disregarded in climate models, is one of the key factors in the energy exchange between the Earth's land surface and the atmosphere. "Remarkably, in summer the difference in heat flux between two types of vegetation -- such as a landscape dominated by lichens and mosses and one with shrubs -- is about the same as between the surface of glaciers and green grasslands," says postdoc Jacqueline Oehri, first author of the study.

Vegetation types linked to data from 64 measuring stations

Arctic vegetation is highly diverse and ranges from dry grasslands and wetlands to scrubland dominated by dwarf shrubs as well as barrens with mosses and lichens. The researchers linked this vegetation diversity to all available energy exchange data collected by 64 measuring stations in the Arctic between 1994 and 2021. Their focus was on the summer months between June and August, during which sunlight, and thus energy absorption, is particularly high. Depending on the type of vegetation, either the surface or the air are warmed to varying degrees. In addition, with increasing shrub density land warms up earlier after winter. "The shrubs' dark branches emerge from under the snow early, absorb sunlight and pass it on to the surface long before the snow melts away," explains Oehri.

Cooling vegetation can preserve permafrost in the tundra

"Our findings on the energy flows in the Arctic are extremely relevant, since the preservation of permafrost depends to a large extent on the heat flux into the ground," says UZH professor Gabriela Schaepman-Strub. The study's data make it possible to incorporate the effects of different plant communities and their distribution into climate predictions. Researchers can thus use improved climate models to calculate whether, and to which extent tundra vegetation in the Arctic plays a role in cooling the land surface.

Precision models require additional measuring stations

"We now know which plant communities have a particularly pronounced cooling or warming effect through energy exchange. This enables us to determine how changes in plant communities, which are occurring in many regions in the Arctic, are affecting permafrost and the climate," says Schaepman-Strub. This requires improvements in data collection, in particular. Although the Arctic is changing rapidly and has a major impact on the climate dynamics of the entire planet, there are only few reliable measuring stations in this region. In addition to calling for current stations to remain in operation, the study authors believe new stations are needed in those Arctic landscape types that could only be partially analyzed due to incomplete data.


Story Source:

Materials provided by University of Zurich. Note: Content may be edited for style and length.


Journal Reference:

  1. Jacqueline Oehri, Gabriela Schaepman-Strub, Jin-Soo Kim, Raleigh Grysko, Heather Kropp, Inge Grünberg, Vitalii Zemlianskii, Oliver Sonnentag, Eugénie S. Euskirchen, Merin Reji Chacko, Giovanni Muscari, Peter D. Blanken, Joshua F. Dean, Alcide di Sarra, Richard J. Harding, Ireneusz Sobota, Lars Kutzbach, Elena Plekhanova, Aku Riihelä, Julia Boike, Nathaniel B. Miller, Jason Beringer, Efrén López-Blanco, Paul C. Stoy, Ryan C. Sullivan, Marek Kejna, Frans-Jan W. Parmentier, John A. Gamon, Mikhail Mastepanov, Christian Wille, Marcin Jackowicz-Korczynski, Dirk N. Karger, William L. Quinton, Jaakko Putkonen, Dirk van As, Torben R. Christensen, Maria Z. Hakuba, Robert S. Stone, Stefan Metzger, Baptiste Vandecrux, Gerald V. Frost, Martin Wild, Birger Hansen, Daniela Meloni, Florent Domine, Mariska te Beest, Torsten Sachs, Aram Kalhori, Adrian V. Rocha, Scott N. Williamson, Sara Morris, Adam L. Atchley, Richard Essery, Benjamin R. K. Runkle, David Holl, Laura D. Riihimaki, Hiroki Iwata, Edward A. G. Schuur, Christopher J. Cox, Andrey A. Grachev, Joseph P. McFadden, Robert S. Fausto, Mathias Göckede, Masahito Ueyama, Norbert Pirk, Gijs de Boer, M. Syndonia Bret-Harte, Matti Leppäranta, Konrad Steffen, Thomas Friborg, Atsumu Ohmura, Colin W. Edgar, Johan Olofsson, Scott D. Chambers. Vegetation type is an important predictor of the arctic summer land surface energy budget. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-34049-3

Cite This Page:

University of Zurich. "Vegetation regulates energy exchange in the Arctic." ScienceDaily. ScienceDaily, 31 October 2022. <www.sciencedaily.com/releases/2022/10/221031091402.htm>.
University of Zurich. (2022, October 31). Vegetation regulates energy exchange in the Arctic. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2022/10/221031091402.htm
University of Zurich. "Vegetation regulates energy exchange in the Arctic." ScienceDaily. www.sciencedaily.com/releases/2022/10/221031091402.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES