New! Sign up for our free email newsletter.
Science News
from research organizations

Unused stockpiles of nuclear waste could be more useful than we might think

Chemists have found a new use for the waste product of nuclear power

Date:
January 10, 2020
Source:
University of Sussex
Summary:
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.
Share:
FULL STORY

Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Depleted uranium (DU) is a radioactive by-product from the process used to create nuclear energy. Many fear the health risks from DU, as it is either stored in expensive facilities or used to manufacture controversial armour-piercing missiles.

But, in a paper published in the Journal of the American Chemical Society, Professor Geoff Cloke, Professor Richard Layfield and Dr Nikolaos Tsoureas, all at the University of Sussex, have revealed that DU could, in fact, be more useful than we might think.

By using a catalyst which contains depleted uranium, the researchers have managed to convert ethylene (an alkene used to make plastic) into ethane (an alkane used to produce a number of other compounds including ethanol).

Their work is a breakthrough that could help reduce the heavy burden of large-scale storage of DU, and lead to the transformation of more complicated alkenes.

Prof Layfield said: "The ability to convert alkenes into alkanes is an important chemical reaction that means we may be able to take simple molecules and upgrade them into valuable commodity chemicals, like hydrogenated oils and petrochemicals which can be used as an energy source.

"The fact that we can use depleted uranium to do this provides proof that we don't need to be afraid of it as it might actually be very useful for us."

Working in collaboration with researchers at Université de Toulouse and Humboldt-Universität zu Berlin, the Sussex team discovered that an organometallic molecule based on depleted uranium could catalyse the addition of a molecule of hydrogen to the carbon-carbon double bond in ethylene -- the simplest member of alkene family -- to create ethane.

Prof. Cloke said: "Nobody has thought to use DU in this way before. While converting ethylene into ethane is nothing new, the use or uranium is a key milestone.

"The key to the reactivity were two fused pentagonal rings of carbon, known as pentalene, which help the uranium to inject electrons into ethylene and activate it towards addition of hydrogen."


Story Source:

Materials provided by University of Sussex. Original written by Stephanie Allen. Note: Content may be edited for style and length.


Journal Reference:

  1. Nikolaos Tsoureas, Laurent Maron, Alexander F. R. Kilpatrick, Richard A. Layfield, F. Geoffrey N. Cloke. Ethene Activation and Catalytic Hydrogenation by a Low-Valent Uranium Pentalene Complex. Journal of the American Chemical Society, 2019; 142 (1): 89 DOI: 10.1021/jacs.9b11929

Cite This Page:

University of Sussex. "Unused stockpiles of nuclear waste could be more useful than we might think." ScienceDaily. ScienceDaily, 10 January 2020. <www.sciencedaily.com/releases/2020/01/200110101025.htm>.
University of Sussex. (2020, January 10). Unused stockpiles of nuclear waste could be more useful than we might think. ScienceDaily. Retrieved December 20, 2024 from www.sciencedaily.com/releases/2020/01/200110101025.htm
University of Sussex. "Unused stockpiles of nuclear waste could be more useful than we might think." ScienceDaily. www.sciencedaily.com/releases/2020/01/200110101025.htm (accessed December 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES