New! Sign up for our free email newsletter.
Science News
from research organizations

New model could help predict major earthquakes

Date:
April 26, 2017
Source:
Nagoya University
Summary:
Researchers have characterized several earthquakes that struck South America's west coast over the last 100 years by using seismographic data, tsunami recordings, and models of the rapid plate movements associated with these natural disasters. The team showed that some earthquakes were linked to the same sites of rupture at plate boundaries and others to different sites. Thus, they revealed the periodicity and intensity of earthquakes associated with particular sites, potentially aiding future earthquake prediction.
Share:
FULL STORY

A Nagoya University-led team reveals the mechanisms behind different earthquakes at a plate boundary on the west coast of South America, shedding light on historical seismic events and potentially aiding prediction of the future risk from these natural disasters.

When tectonic plates that have been sliding past each other get stuck, a huge amount of energy builds up, and is eventually released in the form of an earthquake. Although much is known about the mechanisms behind this process, more needs to be understood about what happens at particular plate boundaries to determine the risk of earthquakes and tsunamis at specific sites and potentially to predict when these events might occur.

In a breakthrough in this field, researchers at Nagoya University and their colleagues in South America have studied several earthquakes that occurred at the Ecuador-Colombia subduction zone over the last hundred years, revealing the relationships between different earthquakes and the size and location of the ruptures at plate boundaries that caused them. The findings were published in Geophysical Research Letters.

The team used a combination of data sources and models to study large earthquakes that struck the west coast of South America in 1906, 1942, 1958, 1979, and 2016. These included information on tsunami waveforms recorded at sites across the Pacific, data on seismic waves obtained by monitoring stations in Ecuador and Colombia, and previous work on the intensity of coupling, or locking together, of adjacent plates and the distance that they slipped past each other to cause each earthquake.

"The Ecuador-Colombia subduction zone, where the Nazca plate passes underneath the South American plate, is particularly interesting because of the frequency of large earthquakes there," says study author Hiroyuki Kumagai of the Graduate School of Environmental Studies, Nagoya University. "It's also a good site to investigate whether the ruptures at plate boundaries causing huge earthquakes are linked to subsequent large earthquakes years or decades later."

By carefully modeling the fault area where these earthquakes arose in combination with the other data, the team showed that the strongest of the earthquakes, that of 1906, involved a rupture at a different site than the other earthquakes. They also used data on the known speed at which the plates are moving past each other and the simulated "slip" of a plate associated with the 2016 earthquake to show that the 1942 and 2016 earthquakes were triggered by ruptures at the same site.

"Now that we can precisely link previous earthquakes to ruptures at specific sites along plate boundaries, we can gauge the risks associated with the build-up of pressure at these sites and the likely frequency of earthquakes there," lead author Masahiro Yoshimoto says. "Our data also reveal for the first time differences in rupture mechanisms between oceanic trenches and deeper coastal regions in this subduction zone."

The findings provide a foundation for risk prediction tools to assess the likelihood of earthquakes and tsunamis striking this region and their potential periodicity and intensity.


Story Source:

Materials provided by Nagoya University. Note: Content may be edited for style and length.


Journal Reference:

  1. Masahiro Yoshimoto, Hiroyuki Kumagai, Wilson Acero, Gabriela Ponce, Freddy Vásconez, Santiago Arrais, Mario Ruiz, Alexandra Alvarado, Patricia Pedraza García, Viviana Dionicio, Orlando Chamorro, Yuta Maeda, Masaru Nakano. Depth-dependent rupture mode along the Ecuador-Colombia subduction zone. Geophysical Research Letters, 2017; DOI: 10.1002/2016GL071929

Cite This Page:

Nagoya University. "New model could help predict major earthquakes." ScienceDaily. ScienceDaily, 26 April 2017. <www.sciencedaily.com/releases/2017/04/170426092332.htm>.
Nagoya University. (2017, April 26). New model could help predict major earthquakes. ScienceDaily. Retrieved November 4, 2024 from www.sciencedaily.com/releases/2017/04/170426092332.htm
Nagoya University. "New model could help predict major earthquakes." ScienceDaily. www.sciencedaily.com/releases/2017/04/170426092332.htm (accessed November 4, 2024).

Explore More

from ScienceDaily

RELATED STORIES