New! Sign up for our free email newsletter.
Science News
from research organizations

Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology

Date:
July 10, 2011
Source:
University of Bristol
Summary:
With the evolution of jaws some 420 million years ago, jawed animals diversified rapidly into a range of niches that remained stable for the following 80 million years, despite extinctions, habitat loss and competition, say researchers.
Share:
FULL STORY

More than 99 per cent of modern vertebrates (animals with a backbone, including humans) have jaws, yet 420 million years ago, jawless, toothless armour-plated fishes dominated the seas, lakes, and rivers. There were no vertebrates yet on land and the recently evolved jawed fishes were minor players in this alien world, some sporting unusual jaw shapes and structures that bear little physical resemblance to modern animals.

The researchers, led by Dr Philip Anderson of Bristol's School of Earth Sciences, applied concepts from physics and engineering to unravel the potential feeding functions of these unusual, early vertebrate jaw designs, and compared this data to patterns of diversity in both jawed and jawless fishes. While it has long been assumed that jawed fishes were better adapted, and therefore directly out-competed and replaced their jawless neighbours during this tumultuous time, this assertion has never been tested.

Dr Anderson said: "Surprisingly, our results indicate that long-held assumptions concerning the replacement of jawless fishes by newly evolved jawed forms are likely wrong. The variety of feeding mechanisms in early jawed animals appears to have had little to no affect on the diversity of jawless fishes, which shared ecological space with the jawed fishes for at least 30 million years before beginning to notably decline. When the jawless fishes do decline, we see no indication that their jawed cousins took up new functional roles, calling into question old ideas of ecological replacement.

"Furthermore, jawed vertebrates achieved a stable diversity in their feeding apparatus early in their evolution, and maintained this diversity in the face of major environmental changes during the Devonian period. Previous studies have suggested that the rise of major jawed vertebrate ecological diversity is tied to a documented oxygenation event 400 million years ago, but our results place the first burst of diversification of jawed vertebrates well before that.

"The groups which comprise the majority of modern fish diversity (ray-finned fishes), as well as our own fish ancestors (early tetrapods), are restricted to only a few types of jaws and feeding ecologies, while bizarre, extinct groups (such as placoderms and a surprising number of extinct lungfishes) show a wide range of feeding ecologies that at the time dominated the jawed vertebrate world. It is interesting to speculate what modern jawed vertebrates might have looked like if these diverse groups hadn't been severely diminished (extinct in the case of the placoderms) after the Devonian."

The research group hopes that these new methods for assessing the variation in functional systems (such as feeding apparatus), will be applied to the study of other extinct groups during times of dramatic transitions, such as mass extinctions and evolutionary radiations.


Story Source:

Materials provided by University of Bristol. Note: Content may be edited for style and length.


Journal Reference:

  1. Philip S. L. Anderson, Matt Friedman, Martin D. Brazeau, Emily J. Rayfield. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature, 2011; DOI: 10.1038/nature10207

Cite This Page:

University of Bristol. "Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology." ScienceDaily. ScienceDaily, 10 July 2011. <www.sciencedaily.com/releases/2011/07/110706134130.htm>.
University of Bristol. (2011, July 10). Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology. ScienceDaily. Retrieved January 23, 2025 from www.sciencedaily.com/releases/2011/07/110706134130.htm
University of Bristol. "Vertebrate jaw design locked early: Study on initial diversification of jaws sheds light on early vertebrate feeding ecology." ScienceDaily. www.sciencedaily.com/releases/2011/07/110706134130.htm (accessed January 23, 2025).

Explore More

from ScienceDaily

RELATED STORIES