New! Sign up for our free email newsletter.
Science News
from research organizations

Groundbreaking discovery on stem cell regulation

Date:
March 1, 2012
Source:
Agency for Science, Technology and Research (A*STAR), Singapore
Summary:
Scientists have for the first time, identified that precise regulation of polyamine levels is critical for embryonic stem cell (ESC) self-renewal -- the ability of ESCs to divide indefinitely -- and directed differentiation. This paper is crucial for better understanding of ESC regulation.
Share:
FULL STORY

A*STAR scientists have for the first time, identified that precise regulation of polyamine[1] levels is critical for embryonic stem cell (ESC) self-renewal -- the ability of ESCs to divide indefinitely -- and directed differentiation. This paper is crucial for better understanding of ESC regulation and was published in the journal Genes & Development on 1st March by the team of scientists from the Institute of Medical Biology (IMB), a research institute under the Agency for Science, Technology and Research (A*STAR).

Embryonic stem cells hold great potential for the development of cellular therapies, where stem cells are used to repair tissue damaged by disease or trauma. This is due to their unique ability to renew themselves and differentiate into any specific types of cell in the body. One of the challenges with cellular therapies is ensuring that ESCs are fully and efficiently differentiated into the correct cell type. This study sheds light on understanding how ESCs are regulated, which is essential to overcome these challenges and turn the vision of cell therapies into reality.

Using a mouse model, the team of scientists from IMB showed that high levels of Amd1[2], a key enzyme in the polyamine synthesis pathway, is essential for maintenance of the ESC state and self renewal of ESCs. To further demonstrate the critical role of Amd1 in ESC self-renewal, the scientists showed that increasing Amd1 levels led to delayed ESC differentiation. The research also revealed that downregulation of Amd1 was necessary for differentiation of ESCs into neural precursor cells and that Amd1 is translationally regulated by a micro-RNA (miRNA), the first ever demonstration of miRNA-mediated regulation of the polyamine pathway.

While the polyamine pathway is well established and polyamines are known to be important in cancer and cell proliferation, their role in ESC regulation until now was unknown. This novel discovery, linking polyamine regulation to ESC biology, came about when the team set up a genome-wide screen to look for mRNAs under translational control in order to identify new regulators of ESC differentiation to neural precursor cells.

Dr Leah Vardy, principle investigator at the IMB and lead author of the paper, said, "The polyamines that Amd1 regulate have the potential to regulate many different aspects of self renewal and differentiation. The next step is to understand in more detail the molecular targets of these polyamines both in embryonic stem cells and cells differentiating to different cellular lineages. It is possible that manipulation of polyamine levels in embryonic stem cells through inhibitors or activators of the pathway could help direct the differentiation of embryonic stem cells to more clinically useful cell types."

Notes:

[1] Polyamines are required for a wide range of cellular processes, including differentiation and cell proliferation, and their levels are tightly regulated.

[2] Amd1 (Adenosyl methionine decarboxylase) is a critical enzme required for the synthesis of the polyamines spermine and spermidine.


Story Source:

Materials provided by Agency for Science, Technology and Research (A*STAR), Singapore. Note: Content may be edited for style and length.


Cite This Page:

Agency for Science, Technology and Research (A*STAR), Singapore. "Groundbreaking discovery on stem cell regulation." ScienceDaily. ScienceDaily, 1 March 2012. <www.sciencedaily.com/releases/2012/03/120301103915.htm>.
Agency for Science, Technology and Research (A*STAR), Singapore. (2012, March 1). Groundbreaking discovery on stem cell regulation. ScienceDaily. Retrieved January 6, 2025 from www.sciencedaily.com/releases/2012/03/120301103915.htm
Agency for Science, Technology and Research (A*STAR), Singapore. "Groundbreaking discovery on stem cell regulation." ScienceDaily. www.sciencedaily.com/releases/2012/03/120301103915.htm (accessed January 6, 2025).

Explore More

from ScienceDaily

RELATED STORIES