New! Sign up for our free email newsletter.
Science News
from research organizations

Multiplexing in the visual brain

Date:
March 27, 2011
Source:
Ruhr-Universitaet-Bochum
Summary:
Imagine sitting in a train at the railway station looking outside: Without analyzing the relative motion of object contours across many different locations at the same time, it is often difficult to decide whether it's your train that starts moving, or the one at the opposite track. How are these diverse information conveyed simultaneously through the network of millions of activated nerve cells in the visual brain?
Share:
FULL STORY

The dye incorporates in the brain cells' membrane and changes fluorescence whenever these receive or send electrical signals. Hence, high resolution camera systems allow to simultaneously capture activities of millions of nerve cells across several square millimeters across the brain.

First-time visualization of grating pattern motion across the brain surface

As a stimulus the researchers used simple oriented gratings with alternating black-white stripes drifting at constant speed across a monitor screen. These stimuli have been used for more than 50 years in visual neuroscience and still are conventionally applied in medical diagnostics. However, brain activity that signals both the grating's orientation and its motion simultaneously has not been detected so far. Such signals could now be demonstrated for the first time. Note that further computational steps including sophisticated analysis were needed before those smallest brain activity signals became visible.

Cortical mapping of object orientation

Optical imaging became state-of-the-art since it allows fine grained resolution of cortical pattern activity, so-called maps, in which local groups of active nerve cells represent grating orientation. Thereby, a particular grating orientation activates different groups of nerve cells resulting in unique patchy patterns. Their specific map layout encodes actual stimulus orientation.

Transfer of motion information through overlaid activity waves

Jancke: "Our novel imaging method furthermore captures propagating activity waves across these orientation maps. Hence, we additionally observe gratings moving in real-time across the brain. In this way, motion direction and speed can be estimated independently from orientation maps, which enables resolving ambiguities occurring in visual scenes of everyday life." The emerging spatial-temporal patterns could then individually be received and interpreted by other brain areas. To give a picture: a radio gets a permanent stream of broadcasts simultaneously. In order to listen to a particular station one has to choose only the channel to tune.

For example, a following brain area might preferentially compute an object's orientation while others process its movement direction or speed simultaneously. In the future, the scientists hope to discover more of the brains real-time action when similar tools are used with increasing stimulus complexity: Naturalistic images are experienced so effortlessly in everyday life. Still it remains an intriguing question how the brain handles such complex data gaining a stable percept every moment in time.


Story Source:

Materials provided by Ruhr-Universitaet-Bochum. Note: Content may be edited for style and length.


Journal Reference:

  1. Selim Onat, Nora Nortmann, Sascha Rekauzke, Peter König, Dirk Jancke. Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. NeuroImage, 2011; DOI: 10.1016/j.neuroimage.2011.01.004

Cite This Page:

Ruhr-Universitaet-Bochum. "Multiplexing in the visual brain." ScienceDaily. ScienceDaily, 27 March 2011. <www.sciencedaily.com/releases/2011/03/110324104408.htm>.
Ruhr-Universitaet-Bochum. (2011, March 27). Multiplexing in the visual brain. ScienceDaily. Retrieved December 22, 2024 from www.sciencedaily.com/releases/2011/03/110324104408.htm
Ruhr-Universitaet-Bochum. "Multiplexing in the visual brain." ScienceDaily. www.sciencedaily.com/releases/2011/03/110324104408.htm (accessed December 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES