New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Spinal cord

The spinal cord is a cylindrical structure of nervous tissue that serves as the main communication conduit between the brain and the rest of the body. It extends from the base of the brain, through the vertebral column, and down to the lower back. Protected by vertebrae, meninges, and cerebrospinal fluid, the spinal cord plays a crucial role in transmitting sensory information to the brain and sending motor commands back to muscles and organs. It is an essential component of the central nervous system and is key to both voluntary movement and involuntary reflexes.

Structurally, the spinal cord is organized into segments, each associated with a pair of spinal nerves that branch out to specific regions of the body. These segments are classified as cervical, thoracic, lumbar, sacral, and coccygeal. Each spinal nerve contains both sensory fibers, which carry information from the body to the spinal cord, and motor fibers, which transmit instructions from the spinal cord to muscles. This arrangement allows for precise control of different parts of the body and ensures that signals are relayed quickly and efficiently.

Within the spinal cord, gray matter forms an inner butterfly-shaped core that contains neuron cell bodies, while white matter surrounds it, consisting mainly of myelinated axons that carry signals up and down the spinal cord. The spinal cord not only serves as a relay center but also processes certain types of information independently. Reflex arcs, for example, allow the body to respond rapidly to stimuli without requiring input from the brain. This is evident in reflex actions such as pulling a hand away from a hot surface, where the spinal cord initiates the response directly.

Damage to the spinal cord can result in significant and often irreversible impairments, depending on the location and severity of the injury. Such damage may lead to partial or complete loss of motor function, sensation, and autonomic control below the site of injury. Conditions like spinal cord injury, herniated discs, infections, tumors, and degenerative diseases can severely affect spinal cord function. Advances in spinal cord research, including regenerative therapies, electrical stimulation, and neural prosthetics, are opening new avenues for rehabilitation and potential recovery.

The spinal cord is far more than a simple pathway for nerve signals; it is a highly organized and adaptive system that integrates information and orchestrates responses crucial for survival. Understanding its structure and function is essential not only for diagnosing and treating neurological disorders but also for advancing technologies that may one day restore movement and independence to individuals with spinal cord injuries.

Related Stories
 


Health & Medicine News

August 1, 2025

Ape behavior just got a name upgrade — “scrumping” — and it might help explain why humans can handle alcohol so well. Researchers discovered that African apes regularly eat overripe, ...
Women who drank heavily, even though they strongly wished to avoid pregnancy, were 50% more likely to become pregnant than those who drank little or not at all, according to new research. Surprisingly, cannabis use didn t show the same ...
In an exciting breakthrough, researchers have identified cancer drugs that might reverse the effects of Alzheimer's disease in the brain. By analyzing gene expression in brain cells, they discovered that some FDA-approved cancer medications could ...
GLP-1 drugs like Ozempic are transforming weight loss, but a new UVA study warns they're not improving a critical measure of health: cardiorespiratory fitness. While these medications help people shed fat, they also strip away vital muscle mass ...
Stepping into a virtual forest or waterfall scene through VR could be the future of pain management. A new study shows that immersive virtual nature dramatically reduces pain sensitivity almost as ...
Potent statins are the best-proven weapon against heart disease, especially when paired with lifestyle changes. Most people aren’t active enough—and many are underdiagnosed—so starting treatment strong is ...
A newly mapped neural circuit shows how our skin senses cool temperatures and sends that info to the brain, revealing an unexpected amplifier in the spinal cord and offering insight into cold-related ...
A group of Australian scientists has uncovered a new way to fight some of the toughest cancers by targeting an overlooked cellular process called minor splicing. This tiny but vital mechanism turns out to be essential for the growth of certain ...
A new global study reveals a striking post-pandemic surge in gut-brain disorders like IBS and functional dyspepsia. Researchers compared data from 2017 and 2023 and discovered sharp increases—IBS up 28% and dyspepsia nearly 44%. Those suffering ...
Scientists at Kyoto University have developed a groundbreaking "lung-on-a-chip" that can mimic the distinct regions of human lungs—airways and alveoli—to study how viruses like COVID-19 affect them differently. Powered by isogenic induced ...
A global study of over 88,000 adults reveals that poor sleep habits—like going to bed inconsistently or having disrupted circadian rhythms—are tied to dramatically higher risks for dozens of diseases, including liver cirrhosis and gangrene. ...
Scientists at Columbia Engineering have developed an injectable hydrogel made from yogurt-derived extracellular vesicles (EVs) that could revolutionize regenerative medicine. These EVs serve both as healing agents and as structural components, ...

Latest Headlines

updated 12:56 pm ET