New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Nanotechnology

Nanotechnology refers broadly to a field of applied science and technology whose unifying theme is the control of matter on the molecular level in scales smaller than 1 micrometre, normally 1 to 100 nanometers, and the fabrication of devices within that size range.

It is a highly multidisciplinary field, drawing from fields such as applied physics, materials science, colloidal science, device physics, supramolecular chemistry, and even mechanical and electrical engineering. Much speculation exists as to what new science and technology may result from these lines of research. Nanotechnology can be seen as an extension of existing sciences into the nanoscale, or as a recasting of existing sciences using a newer, more modern term.

Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition. In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control. The impetus for nanotechnology comes from a renewed interest in colloidal science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM), and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography and molecular beam epitaxy, these instruments allow the deliberate manipulation of nanostructures, and led to the observation of novel phenomena.

Examples of nanotechnology in modern use are the manufacture of polymers based on molecular structure, and the design of computer chip layouts based on surface science. Despite the great promise of numerous nanotechnologies such as quantum dots and nanotubes, real commercial applications have mainly used the advantages of colloidal nanoparticles in bulk form, such as suntan lotion, cosmetics, protective coatings, and stain resistant clothing.

Modern synthetic chemistry has reached the point where it is possible to prepare small molecules to almost any structure. These methods are used today to produce a wide variety of useful chemicals such as pharmaceuticals or commercial polymers. This ability raises the question of extending this kind of control to the next-larger level, seeking methods to assemble these single molecules into supramolecular assemblies consisting of many molecules arranged in a well defined manner.

These approaches utilize the concepts of molecular self-assembly and/or supramolecular chemistry to automatically arrange themselves into some useful conformation through a bottom-up approach. The concept of molecular recognition is especially important: molecules can be designed so that a specific conformation or arrangement is favored due to non-covalent intermolecular forces. The Watson-Crick basepairing rules are a direct result of this, as is the specificity of an enzyme being targeted to a single substrate, or the specific folding of the protein itself. Thus, two or more components can be designed to be complementary and mutually attractive so that they make a more complex and useful whole.

Related Stories
 


Matter & Energy News

August 27, 2025

Researchers have developed a blueprint for weaving hopfions—complex, knot-like light structures—into repeating spacetime crystals. By exploiting two-color beams, they can generate ordered chains and lattices with tunable topology, potentially ...
Researchers in Germany have unveiled the Metafiber, a breakthrough device that allows ultra-precise, rapid, and compact control of light focus directly within an optical fiber. Unlike traditional ...
Hydrogen fuel cells could power cars, devices, and homes with nothing but water as a byproduct—but platinum’s cost holds them back. Chinese researchers have now unveiled a breakthrough iron-based catalyst that could rival platinum while boosting ...
A research team created a plant-inspired molecule that can store four charges using sunlight, a key step toward artificial photosynthesis. Unlike past attempts, it works with dimmer light, edging closer to real-world solar fuel ...
Scientists have cracked one of chemistry’s toughest challenges with indoles, using copper to unlock a spot once thought too stubborn to change. The discovery could pave the way for easier, cheaper ...
Scientists using Google’s quantum processor have taken a major step toward unraveling the deepest mysteries of the universe. By simulating fundamental interactions described by gauge theories, the ...
Physicists have built a novel superconducting platform that mimics hidden vortex states once thought unobservable. Their "backdoor" method overcomes experimental limits, letting them control quantum behavior on demand. The discovery could pave the ...
Scientists have discovered that electron spin loss, long considered waste, can instead drive magnetization switching in spintronic devices, boosting efficiency by up to three times. The scalable, semiconductor-friendly method could accelerate the ...
Researchers cracked the mystery of altermagnets, materials with no net magnetization yet strange light-reflecting powers, by creating a new optical measurement method. Their findings confirmed altermagnetism in an organic crystal and opened doors to ...
A Rochester team engineered a new type of solar thermoelectric generator that produces 15 times more power than earlier versions. By enhancing heat absorption and dissipation rather than tweaking semiconductor materials, they dramatically improved ...
Ripple bugs’ fan-like legs inspired engineers to build the Rhagobot, a tiny robot with self-morphing fans. By mimicking these insects’ passive, ultra-fast movements, the robot gains speed, control, and endurance without extra ...
Scientists have developed a groundbreaking cryo-optical microscopy technique that freezes living cells mid-action, capturing ultra-detailed snapshots of fast biological processes. By rapidly immobilizing cells at precise moments, researchers can ...

Latest Headlines

updated 12:56 pm ET