New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Dark matter

In astrophysics and cosmology, dark matter is hypothetical matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. According to present observations of structures larger than galaxy-sized as well as Big Bang cosmology, dark matter accounts for the vast majority of mass in the observable universe. Fritz Zwicky used it for the first time to declare the observed phenomena consistent with dark matter observations as the rotational speeds of galaxies and orbital velocities of galaxies in clusters, gravitational lensing of background objects by galaxy clusters such as the Bullet cluster, and the temperature distribution of hot gas in galaxies and clusters of galaxies. Dark matter also plays a central role in structure formation and galaxy evolution, and has measurable effects on the anisotropy of the cosmic microwave background. All these lines of evidence suggest that galaxies, clusters of galaxies, and the universe as a whole contain far more matter than that which interacts with electromagnetic radiation: the remainder is called the "dark matter component."

The composition of dark matter is unknown, but may include ordinary and heavy neutrinos, recently postulated elementary particles such as WIMPs and axions, astronomical bodies such as dwarf stars and planets (collectively called MACHOs), and clouds of nonluminous gas. Current evidence favors models in which the primary component of dark matter is new elementary particles, collectively called non-baryonic dark matter.

The dark matter component has vastly more mass than the "visible" component of the universe. At present, the density of ordinary baryons and radiation in the universe is estimated to be equivalent to about one hydrogen atom per cubic metre of space. Only about 4% of the total energy density in the universe (as inferred from gravitational effects) can be seen directly. About 22% is thought to be composed of dark matter. The remaining 74% is thought to consist of dark energy, an even stranger component, distributed diffusely in space. Some hard-to-detect baryonic matter makes a contribution to dark matter, but constitutes only a small portion. Determining the nature of this missing mass is one of the most important problems in modern cosmology and particle physics.

Related Stories
 


Space & Time News

December 9, 2025

SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Earth’s orbit is getting crowded with broken satellites and leftover rocket parts. Researchers say the solution is to build spacecraft that can be repaired, reused, or recycled instead of abandoned. They also want new tools to collect old debris ...
A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the ...
A massive solar storm in May 2024 gave scientists an unprecedented look at how Earth’s protective plasma layer collapses under intense space weather. With the Arase satellite in a perfect observing position, researchers watched the plasmasphere ...
New observations show that asteroid 1998 KY26 is a mere 11 meters across and spinning twice as fast as previously thought. The discovery adds complexity to Hayabusa2’s 2031 mission but also heightens scientific interest. The asteroid’s ...
Scientists built a tiny clock from single-electron jumps to probe the true energy cost of quantum timekeeping. They discovered that reading the clock’s output requires vastly more energy than the clock uses to function. This measurement process ...
Researchers combined deep learning with high-resolution physics to create the first Milky Way model that tracks over 100 billion stars individually. Their AI learned how gas behaves after supernovae, removing one of the biggest computational ...
Dark matter may be invisible, but scientists are getting closer to understanding whether it follows the same rules as everything we can see. By comparing how galaxies move through cosmic gravity wells to the depth of those wells, researchers found ...
Researchers engineered “gyromorphs,” a new type of metamaterial that combines liquid-like randomness with large-scale structural patterns to block light from every direction. This innovation solves longstanding limitations in quasicrystal-based ...
Arctic sea ice is disappearing fast, and scientists have turned to an unexpected cosmic clue—space dust—to uncover how ice has changed over tens of thousands of years. By tracking helium-3–bearing dust trapped (or blocked) by ancient ice, ...
New research from UBC Okanagan mathematically demonstrates that the universe cannot be simulated. Using Gödel’s incompleteness theorem, scientists found that reality requires “non-algorithmic understanding,” something no computation can ...
A team of astronomers used the James Webb Space Telescope to create the first 3D atmospheric map of an exoplanet. The fiery WASP-18b, a massive “ultra-hot Jupiter,” revealed striking temperature contrasts, including regions so hot they destroy ...

Latest Headlines

updated 12:56 pm ET