New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Blue Gene

Blue Gene is a computer architecture project designed to produce several next-generation supercomputers, designed to reach operating speeds in the petaflops range, and currently reaching sustained speeds over 360 teraflops. It is a cooperative project among IBM (particularly the Thomas J. Watson Research Center), the Lawrence Livermore National Laboratory, the United States Department of Energy (which is partially funding the project), and academia. There are four Blue Gene projects in development: BlueGene/L, BlueGene/C, BlueGene/P, and BlueGene/Q.

On June 26, 2007, IBM unveiled Blue Gene/P, the second generation of the Blue Gene supercomputer. Designed to run continuously at one petaflops, it can be configured to reach speeds in excess of three petaflops. Furthermore, it is at least seven times more energy efficient than any other supercomputer, accomplished by using many small, low-power chips connected through five specialized networks.

Related Stories
 


Computers & Math News

October 26, 2025

A wireless eye implant developed at Stanford Medicine has restored reading ability to people with advanced macular degeneration. The PRIMA chip works with smart glasses to replace lost photoreceptors using infrared light. Most trial participants ...
Researchers at the University of Surrey developed an AI that predicts what a person’s knee X-ray will look like in a year, helping track osteoarthritis progression. The tool provides both a visual forecast and a risk score, offering doctors and ...
UMass Amherst engineers have built an artificial neuron powered by bacterial protein nanowires that functions like a real one, but at extremely low voltage. This allows for seamless communication with biological cells and drastically improved energy ...
Vast amounts of valuable research data remain unused, trapped in labs or lost to time. Frontiers aims to change that with FAIR² Data Management, a groundbreaking AI-driven system that makes datasets reusable, verifiable, and citable. By uniting ...
A team of engineers at North Carolina State University has designed a polymer “Chinese lantern” that can rapidly snap into multiple stable 3D shapes—including a lantern, a spinning top, and more—by compression or twisting. By adding a ...
Our everyday GPS struggles in “urban canyons,” where skyscrapers bounce satellite signals, confusing even advanced navigation systems. NTNU scientists created SmartNav, combining satellite corrections, wave analysis, and Google’s 3D building ...
Mars may look calm, but new research reveals it’s a world of fierce winds and swirling dust devils racing at hurricane-like speeds. Using deep learning on thousands of satellite images from European orbiters, scientists have discovered that ...
Scientists at Skoltech developed a new mathematical model of memory that explores how information is encoded and stored. Their analysis suggests that memory works best in a seven-dimensional conceptual space — equivalent to having seven senses. ...
Researchers have found a way to extract almost every photon from diamond color centers, a key obstacle in quantum technology. Using hybrid nanoantennas, they precisely guided light from nanodiamonds into a single direction, achieving 80% efficiency ...
In a remarkable leap for quantum physics, researchers in Japan have uncovered how weak magnetic fields can reverse tiny electrical currents in kagome metals—quantum materials with a woven atomic structure that frustrates electrons into forming ...
An international team has confirmed that large quantum systems really do obey quantum mechanics. Using Bell’s test across 73 qubits, they proved the presence of genuine quantum correlations that can’t be explained classically. Their results show ...
Researchers at Columbia have created a chip that turns a single laser into a “frequency comb,” producing dozens of powerful light channels at once. Using a special locking mechanism to clean ...

Latest Headlines

updated 12:56 pm ET