Scientists find potential target for dry age-related macular degeneration
- Date:
- November 3, 2015
- Source:
- Association for Research in Vision and Ophthalmology (ARVO)
- Summary:
- Scientists have good news for patients who suffer from currently untreatable dry age-related macular degeneration (dry AMD). In a new study, researchers identified a potential target for future therapies to slow the progression of the blinding condition. The findings indicate that treatments currently used for other conditions could also work for dry AMD.
- Share:
Scientists have good news for patients who suffer from currently untreatable dry age-related macular degeneration (dry AMD). In a new study, researchers identified a potential target for future therapies to slow the progression of the blinding condition. Published in Investigative Ophthalmology & Visual Science (IOVS), the findings indicate that treatments currently used for other conditions could also work for dry AMD.
The paper, "Protective Effects of Anti-Placental Growth Factor Antibody Against Light-Induced Retinal Damage in Mice," brings to light the effect of a known protein, placental growth factor (PlGF), on the development of dry AMD. PlGF had previously been implicated in the progression of a related disease known as wet AMD.
"Currently, blocking PlGF in wet AMD has a therapeutic effect," says author Hideaki Hara, PhD, of Gifu Pharmaceutical University, Department of Biofunctional Evaluation. "In our study, we wanted to learn if PlGF could be a useful therapeutic target for dry AMD."
Earlier in vitro studies by the authors showed that injecting PlGF into retinal cells -- the cells at the back of the eye responsible for sight -- reduced light-induced damage. In this work, the authors evaluated how mice retina responded to injection of PlGF before and after exposure to intense light, a procedure that produces dry AMD like conditions. Surprisingly, the new in vivo mouse studies contradicted the previous results.
"In the present study, we thought that treatment with PlGF would show a protective effect against light-induced retinal degeneration," explains Hara. "Instead, PlGF aggravated the degeneration."
With PlGF seeming to make things worse, the authors then tested anti- PlGF, an antibody that binds PlGF and prevents it from acting. "Anti- PlGF antibody treatment protected against retinal degeneration induced by light exposure. Therefore, our results indicate that an anti-PlGF antibody can become a therapeutic agent in minimizing light-induced degeneration," says Hara.
Fortunately, an existing treatment for wet AMD known as aflibercept already acts as an anti-PlGF antibody. Hara and his team "think there is a very great likelihood that aflibercept shows efficacy in dry AMD." Using an existing drug in clinical trials could shave years off the time needed to determine if an anti-PlGF treatment could address dry AMD, an encouraging prospect for those suffering from the slow, currently untreatable vision loss resulting from the condition.
Story Source:
Materials provided by Association for Research in Vision and Ophthalmology (ARVO). Note: Content may be edited for style and length.
Journal Reference:
- Hiroshi Izawa, Yuki Inoue, Yuta Ohno, Kazuki Ojino, Kazuhiro Tsuruma, Masamitsu Shimazawa, Hideaki Hara. Protective Effects of Antiplacental Growth Factor Antibody Against Light-Induced Retinal Damage in Mice. Investigative Opthalmology & Visual Science, 2015; 56 (11): 6914 DOI: 10.1167/iovs.15-16748
Cite This Page: