New! Sign up for our free email newsletter.
Science News
from research organizations

World's largest animal genome belongs to locust: New insight explains swarming, long-distance migratory behaviors

Date:
January 16, 2014
Source:
BGI Shenzhen
Summary:
The world's largest animal genome belongs to the locust. The yielded genome is remarkably big- at 6.5 gigabytes, which is the largest animal genome sequenced so far, and includes information that helps to explain swarming and long-distance migratory behaviors.
Share:
FULL STORY

Researchers from Institute of Zoology, Chinese Academy of Sciences, BGI and other institutes have successfully decoded the whole genome sequence of Locust (Locusta migratoria), the most widespread locust species. The yielded genome is remarkably big- at 6.5 gigabytes, which is the largest animal genome sequenced so far. The latest study has been published online in the journal Nature Communications.

One surprise from the study is that a single locust can eat its own bodyweight in food in a single day; this is, proportionately, 60 times a human's daily consumption. They are capable of inflicting famine and wiping out livelihoods when they swarms, which can cost countries billions of dollars in lost harvests and eradication efforts.

In this study, researchers sequenced Locusta migratoria using next-gen sequencing technology, totally yielding 721Gb of data, which covered 114 × of the 6.3Gb locust genome size. They annotated and predicted about 17,307 gene models, and identified over 2,639 repeat gene families. Moreover, they discovered that the top ten repeat families only represented 10% of the total genome sequences, suggesting that there were no dominant families in the L. migratoria genome.

Compared with other reference insect genomes, researchers found the reason why locust has such large genome is transposable element proliferation combined with slow rates of loss for these elements. According to statistics, repetitive elements constituted 60% of the assembled genome. The transposable element in the Locust genome was expanded when comparing with the other insects. Besides, they also found that the locust genome exhibited the lowest rate of DNA deletions relative to the other insects.

To investigate the potential involvement of epigenetic regulation in locust phase change, researchers performed comparative methylome and transcriptome analysis. One interesting finding was that repetitive elements were highly methylated and introns had higher methylation levels than exons in locust genome. It was also noteworthy that there had changes in genes involved in the regulation of the cytoskeletal microtubular system and in neuronal activity during the onset of phase change in locusts from solitarious to swarm.

As we all know, locust has an most distinguishing feature- the long-distance flight- which enables them can fly at speed of hundreds of kilometers an hour, or even cross the ocean. In this study, researchers found that locust had developed a highly efficient energy supply system by expansion genes in lipid metabolism and detoxification to fulfill the intensive energy consumption during their long-distance flight. The expansion of its gustatory and olfactory receptor gene families is for its strong adaptation to host plant recognition.

To advance the development of new effective insecticides, researchers identified the gene targets for pest control and new insecticides, such as cys-loop ligand-gated ion channels and G-protein-coupled receptors, which are considered to be major traditional insecticide targets, and the repertoire of several biological processes that may serve as mechanistic targets and lead to the development of specific and sustainable pest control methods.


Story Source:

Materials provided by BGI Shenzhen. Note: Content may be edited for style and length.


Journal Reference:

  1. Xianhui Wang, Xiaodong Fang, Pengcheng Yang, Xuanting Jiang, Feng Jiang, Dejian Zhao, Bolei Li, Feng Cui, Jianing Wei, Chuan Ma, Yundan Wang, Jing He, Yuan Luo, Zhifeng Wang, Xiaojiao Guo, Wei Guo, Xuesong Wang, Yi Zhang, Meiling Yang, Shuguang Hao, Bing Chen, Zongyuan Ma, Dan Yu, Zhiqiang Xiong, Yabing Zhu, Dingding Fan, Lijuan Han, Bo Wang, Yuanxin Chen, Junwen Wang, Lan Yang, Wei Zhao, Yue Feng, Guanxing Chen, Jinmin Lian, Qiye Li, Zhiyong Huang, Xiaoming Yao, Na Lv, Guojie Zhang, Yingrui Li, Jian Wang, Jun Wang, Baoli Zhu, Le Kang. The locust genome provides insight into swarm formation and long-distance flight. Nature Communications, 2014; 5 DOI: 10.1038/ncomms3957

Cite This Page:

BGI Shenzhen. "World's largest animal genome belongs to locust: New insight explains swarming, long-distance migratory behaviors." ScienceDaily. ScienceDaily, 16 January 2014. <www.sciencedaily.com/releases/2014/01/140116113556.htm>.
BGI Shenzhen. (2014, January 16). World's largest animal genome belongs to locust: New insight explains swarming, long-distance migratory behaviors. ScienceDaily. Retrieved November 25, 2024 from www.sciencedaily.com/releases/2014/01/140116113556.htm
BGI Shenzhen. "World's largest animal genome belongs to locust: New insight explains swarming, long-distance migratory behaviors." ScienceDaily. www.sciencedaily.com/releases/2014/01/140116113556.htm (accessed November 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES