New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Gene

A gene is a locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions and/or other functional sequence regions. The physical development and phenotype of organisms can be thought of as a product of genes interacting with each other and with the environment, and genes can be considered as units of inheritance. A concise definition of gene taking into account complex patterns of regulation and transcription, genic conservation and non-coding RNA genes, has been proposed by Gerstein et al. "A gene is a union of genomic sequences encoding a coherent set of potentially overlapping functional products."

In cells, genes consist of a long strand of DNA that contains a promoter, which controls the activity of a gene, and a coding sequence, which determines what the gene produces. When a gene is active, the coding sequence is copied in a process called transcription, producing an RNA copy of the gene's information. This RNA can then direct the synthesis of proteins via the genetic code. However, RNAs can also be used directly, for example as part of the ribosome. These molecules resulting from gene expression, whether RNA or protein, are known as gene products.

Most genes contain non-coding regions that do not code for the gene products, but regulate gene expression. The genes of eukaryotic organisms can contain non-coding regions called introns that are removed from the messenger RNA in a process known as splicing. The regions that actually encode the gene product, which can be much smaller than the introns, are known as exons. One single gene can lead to the synthesis of multiple proteins through the different arrangements of exons produced by alternative splicings.

The total complement of genes in an organism or cell is known as its genome. The genome size of an organism is generally lower in prokaryotes such as bacteria and archaea have generally smaller genomes, both in number of base pairs and number of genes, than even single-celled eukaryotes, although there is no clear relationship between genome sizes and perceived complexity of eukaryotic organisms. One of the largest known genomes belongs to the single-celled amoeba Amoeba dubia, with over 670 billion base pairs, some 200 times larger than the human genome. The estimated number of genes in the human genome has been repeatedly revised downward since the completion of the Human Genome Project; current estimates place the human genome at just under 3 billion base pairs and about 20,000–25,000 genes. A recent Science article gives a final number of 20,488, with perhaps 100 more yet to be discovered . The gene density of a genome is a measure of the number of genes per million base pairs (called a megabase, Mb); prokaryotic genomes have much higher gene densities than eukaryotes. The gene density of the human genome is roughly 12–15 genes/Mb.

Related Stories
 


Health & Medicine News

November 21, 2025

Tiny ingestible spheres filled with engineered bacteria can detect intestinal bleeding by glowing when they encounter heme. Early tests in mice suggest they could become a quick, noninvasive way to monitor gut ...
A cutting-edge approach to immunotherapy shows that forcing cancer cells to die through necroptosis can dramatically boost the body's anti-tumor defenses. By combining three existing drugs, scientists reprogrammed malignant B cells so they release ...
Researchers found that hot tubs raise core body temperature more effectively than traditional or infrared saunas, leading to stronger boosts in blood flow and immune activity. Only hot-water ...
Researchers created a dissolvable microneedle patch that delivers IL-4 directly to damaged heart tissue, jump-starting repair after a heart attack. The targeted approach shifts immune cells into a healing mode while improving communication between ...
Researchers uncovered a powerful weakness in lung cancer by shutting down a protein that helps tumors survive stress. When this protein, FSP1, was blocked, lung tumors in mice shrank dramatically, with many cancer cells essentially triggering their ...
Researchers have recreated a miniature human bone marrow system that mirrors the real structure found inside our bones. The model includes the full mix of cells and signals needed for blood production and even maintains this process for weeks. It ...
A nationwide analysis has uncovered how sprawling fossil fuel infrastructure sits surprisingly close to millions of American homes. The research shows that 46.6 million people live within about a mile of wells, refineries, pipelines, storage sites, ...
Researchers discovered a way to keep T cells from wearing out during the fight against cancer, and the approach could make immune-based treatments far more powerful. They found that tumors use a particular molecular signal to weaken T cells, and ...
Scientists have developed a new molecule that breaks down beta-amyloid plaques by binding to excess copper in the brain. The treatment restored memory and reduced inflammation in rats, while also proving non-toxic and able to cross the blood–brain ...
Researchers discovered that chronic inflammation fundamentally remodels the bone marrow, allowing mutated stem cell clones to quietly gain dominance with age. Reprogrammed stromal cells and interferon-responsive T cells create a self-sustaining ...
A specially engineered antibody that can infiltrate kidney cysts has shown the ability to block key growth signals driving polycystic kidney disease. Early mouse studies suggest it may halt or even reverse cyst expansion without harming healthy ...
Microplastics—tiny particles now found in food, water, air, and even human tissues—may directly accelerate artery-clogging disease, and new research shows the danger may be far greater for males. In mice, environmentally realistic doses of ...

Latest Headlines

updated 12:56 pm ET