New! Sign up for our free email newsletter.
Science News
from research organizations

Dye-sensitized solar cells rival conventional cell efficiency

Date:
July 10, 2013
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Dye-sensitized solar cells rival conventional photovoltaic devices by getting an efficiency boost up to 15 percent thanks to a new solid-state version of the perovskite light harvester device and a two-step fabrication process developed by scientists in Switzerland.
Share:
FULL STORY

Dye-sensitized solar cell efficiency has been raised to a record 15% thanks to a new fabrication process developed by EPFL scientists in Switzerland.

Dye-sensitized solar cells (DSSCs) have many advantages over their silicon-based counterparts. They offer transparency, low cost, and high power conversion efficiencies under cloudy and artificial light conditions. However, until now their overall efficiency has been lower than silicon-based solar cells, mostly because of the inherent voltage loss during the regeneration of the sensitizing dye. In a Nature publication, EPFL scientists have developed a state solid version of the DSSC that is fabricated by a new two-step process raising their efficiency up to a record 15% without sacrificing stability.

The new solid-state embodiment of the DSSC uses a perovskite material as a light harvester and an organic hole transport material to replace the cell's electrolyte. Typical fabrication of this new DSSC involves depositing a perovskite material directly onto a metal-oxide film. The problem is that adding the entire material together often causes wide variation in the morphology and the efficiency of the resulting solar cell, which makes it difficult to use them in everyday applications.

Michael Grätzel's team at EPFL has now solved the problem with a two-step approach: First, one part of the perovskite is deposited in to the pores of the metal-oxide scaffold. Second, the deposited part is exposed to a solution that contains the other component of the perovskite. When the two parts come into contact, they react instantaneously and convert into the complete light-sensitive pigment, permitting much better control over the morphology of the solar cell.

The new method raises DSSC power-conversion efficiency up to a record 15%, exceeding the power conversion efficiencies of conventional, amorphous silicon-based solar cells. The authors believe that it will open a new era of DSSC development, featuring stability and efficiencies that equal or even surpass today's best thin-film photovoltaic devices.


Story Source:

Materials provided by Ecole Polytechnique Fédérale de Lausanne. Original written by Nik Papageorgiou. Note: Content may be edited for style and length.


Journal Reference:

  1. Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin, Michael Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013; DOI: 10.1038/nature12340

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Dye-sensitized solar cells rival conventional cell efficiency." ScienceDaily. ScienceDaily, 10 July 2013. <www.sciencedaily.com/releases/2013/07/130710141850.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2013, July 10). Dye-sensitized solar cells rival conventional cell efficiency. ScienceDaily. Retrieved November 23, 2024 from www.sciencedaily.com/releases/2013/07/130710141850.htm
Ecole Polytechnique Fédérale de Lausanne. "Dye-sensitized solar cells rival conventional cell efficiency." ScienceDaily. www.sciencedaily.com/releases/2013/07/130710141850.htm (accessed November 23, 2024).

Explore More

from ScienceDaily

RELATED STORIES