New! Sign up for our free email newsletter.
Science News
from research organizations

New switch could improve electronics

Date:
December 2, 2011
Source:
University of Pittsburgh
Summary:
Researchers have invented a new type of electronic switch that performs electronic logic functions within a single molecule. The incorporation of such single-molecule elements could enable smaller, faster, and more energy-efficient electronics.
Share:
FULL STORY

Researchers at the University of Pittsburgh have invented a new type of electronic switch that performs electronic logic functions within a single molecule. The incorporation of such single-molecule elements could enable smaller, faster, and more energy-efficient electronics.

The research findings, supported by a $1 million grant from the W.M. Keck Foundation, were published online in the Nov. 14 issue of Nano Letters.

"This new switch is superior to existing single-molecule concepts," said Hrvoje Petek, principal investigator and professor of physics and chemistry in the Kenneth P. Dietrich School of Arts and Sciences and codirector of the Petersen Institute for NanoScience and Engineering (PINSE) at Pitt. "We are learning how to reduce electronic circuit elements to single molecules for a new generation of enhanced and more sustainable technologies."

The switch was discovered by experimenting with the rotation of a triangular cluster of three metal atoms held together by a nitrogen atom, which is enclosed entirely within a cage made up entirely of carbon atoms. Petek and his team found that the metal clusters encapsulated within a hollow carbon cage could rotate between several structures under the stimulation of electrons. This rotation changes the molecule's ability to conduct an electric current, thereby switching among multiple logic states without changing the spherical shape of the carbon cage. Petek says this concept also protects the molecule so it can function without influence from outside chemicals.

Because of their constant spherical shape, the prototype molecular switches can be integrated as atom-like building blocks the size of one nanometer (100,000 times smaller than the diameter of a human hair) into massively parallel computing architectures.

The prototype was demonstrated using an Sc3N@C80 molecule sandwiched between two electrodes consisting of an atomically flat copper oxide substrate and an atomically sharp tungsten tip. By applying a voltage pulse, the equilateral triangle-shaped Sc3N could be rotated predictably among six logic states.

The research was led by Petek in collaboration with chemists at the Leibnitz Institute for Solid State Research in Dresden, Germany, and theoreticians at the University of Science and Technology of China in Hefei, People's Republic of China. The experiments were performed by postdoctoral researcher Tian Huang and research assistant professor Min Feng, both in Pitt's Department of Physics and Astronomy.


Story Source:

Materials provided by University of Pittsburgh. Note: Content may be edited for style and length.


Journal Reference:

  1. Tian Huang, Jin Zhao, Min Feng, Alexey A. Popov, Shangfeng Yang, Lothar Dunsch, Hrvoje Petek. A Molecular Switch Based on Current-Driven Rotation of an Encapsulated Cluster within a Fullerene Cage. Nano Letters, 2011; 111123145903006 DOI: 10.1021/nl2028409

Cite This Page:

University of Pittsburgh. "New switch could improve electronics." ScienceDaily. ScienceDaily, 2 December 2011. <www.sciencedaily.com/releases/2011/12/111201125402.htm>.
University of Pittsburgh. (2011, December 2). New switch could improve electronics. ScienceDaily. Retrieved January 17, 2025 from www.sciencedaily.com/releases/2011/12/111201125402.htm
University of Pittsburgh. "New switch could improve electronics." ScienceDaily. www.sciencedaily.com/releases/2011/12/111201125402.htm (accessed January 17, 2025).

Explore More

from ScienceDaily

RELATED STORIES