New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Passive infrared sensors

Passive InfraRed sensors (PIRs) are electronic devices which are used in some security alarm systems to detect motion of an infrared emitting source, usually a human body.

All objects, living or not, whose temperature is anything above absolute zero emit infrared radiation. This radiation (energy) is invisible to the human eye but can be detected by electronic devices designed for such a purpose. The term 'passive' in this instance means the PIR does not emit any energy of any type but merely sits 'passive' accepting infrared energy through the 'window' in its housing. An intruder entering the protected area is detected when the infrared energy emitted from the intruder's body is focused by a Fresnel lens or a mirror segment and overlaps a section on the chip which had previously been looking at some much cooler part of the protected area. That portion of the chip is now much warmer than when the intruder wasn't there. As the intruder moves, so does the hot spot on the surface of the chip. This moving hot spot causes the electronics connected to the chip to de-energize the relay, operating its contacts, thereby activating the detection input on the alarm control panel.

Related Stories
 


Matter & Energy News

October 28, 2025

A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
A team of researchers has designed a theoretical model for a topological quantum battery capable of long-distance energy transfer and immunity to dissipation. By exploiting topological properties in photonic waveguides, they showed that energy loss ...
Scientists have developed a chromium-molybdenum-silicon alloy that withstands extreme heat while remaining ductile and oxidation-resistant. It could replace nickel-based superalloys, which are limited to about 1,100°C. The new material might make ...
Researchers have found that 2D materials can self-form microscopic cavities that trap light and electrons, altering their quantum behavior. With a miniaturized terahertz spectroscope, the team observed standing light-matter waves without needing ...
A new light-driven cancer therapy uses LEDs and tin nanoflakes to kill tumors safely and affordably. Developed by teams in Texas and Portugal, it eliminates up to 92% of skin cancer cells without ...
Researchers from NTNU and EPFL have unveiled a compact, low-cost laser that outperforms current models in speed, control, and precision. Built using microchip technology, it can be mass-produced for use in everything from Lidar navigation to gas ...
A collaboration between the University of Michigan and AFRL has resulted in 3D-printed metamaterials that can block vibrations using complex geometries. Inspired by nature and theoretical physics, these “kagome tubes” demonstrate how geometry ...
Researchers discovered how to stabilize a high-performance sodium compound, giving sodium-based solid-state batteries the power and stability they’ve long lacked. The new material conducts ions far ...
A team of engineers at North Carolina State University has designed a polymer “Chinese lantern” that can rapidly snap into multiple stable 3D shapes—including a lantern, a spinning top, and more—by compression or twisting. By adding a ...
Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the ...
Scientists at EPFL have reimagined 3D printing by turning simple hydrogels into tough metals and ceramics. Their process allows multiple infusions of metal salts that form dense, high-strength structures without the porosity of earlier methods. ...

Latest Headlines

updated 12:56 pm ET