New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Passive infrared sensors

Passive InfraRed sensors (PIRs) are electronic devices which are used in some security alarm systems to detect motion of an infrared emitting source, usually a human body.

All objects, living or not, whose temperature is anything above absolute zero emit infrared radiation. This radiation (energy) is invisible to the human eye but can be detected by electronic devices designed for such a purpose. The term 'passive' in this instance means the PIR does not emit any energy of any type but merely sits 'passive' accepting infrared energy through the 'window' in its housing. An intruder entering the protected area is detected when the infrared energy emitted from the intruder's body is focused by a Fresnel lens or a mirror segment and overlaps a section on the chip which had previously been looking at some much cooler part of the protected area. That portion of the chip is now much warmer than when the intruder wasn't there. As the intruder moves, so does the hot spot on the surface of the chip. This moving hot spot causes the electronics connected to the chip to de-energize the relay, operating its contacts, thereby activating the detection input on the alarm control panel.

Related Stories
 


Matter & Energy News

November 6, 2025

Researchers are exploring MXenes, 2D materials that could transform air into ammonia for cleaner fertilizers and fuels. Their atomic structures can be tuned to optimize performance, making them promising alternatives to expensive ...
A new copper-magnesium-iron catalyst transforms CO2 into CO at low temperatures with record-breaking efficiency and stability. The discovery paves the way for affordable, scalable production of carbon-neutral synthetic ...
Engineers at the University of Delaware have uncovered a way to bridge magnetism and electricity through magnons—tiny waves that carry information without electrical current. These magnetic waves can generate measurable electric signals within ...
Researchers at Maynooth University have achieved a forensic milestone by revealing fingerprints on fired bullet casings using a safe electrochemical process. The method uses mild voltage and ...
Scientists have achieved a breakthrough in light manipulation by using topological insulators to generate both even and odd terahertz frequencies through high-order harmonic generation (HHG). By embedding these exotic materials into nanostructured ...
Cambridge researchers have engineered a solar-powered “artificial leaf” that mimics photosynthesis to make valuable chemicals sustainably. Their biohybrid device combines organic semiconductors and enzymes to convert CO₂ and sunlight into ...
From mini-brains to spider-inspired gloves and wolf apple coatings, scientists are turning eerie-sounding experiments into real innovations that could revolutionize health and sustainability. Lab-grown brain organoids may replace animal testing, ...
Researchers have made germanium superconducting for the first time, a feat that could transform computing and quantum technologies. Using molecular beam epitaxy to embed gallium atoms precisely, the team stabilized the crystal structure to carry ...
Tohoku University researchers have found a way to make quantum sensors more sensitive by connecting superconducting qubits in optimized network patterns. These networks amplify faint signals possibly left by dark matter. The approach outperformed ...
A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
A team of researchers has designed a theoretical model for a topological quantum battery capable of long-distance energy transfer and immunity to dissipation. By exploiting topological properties in photonic waveguides, they showed that energy loss ...

Latest Headlines

updated 12:56 pm ET