New! Sign up for our free email newsletter.
Science News
from research organizations

Acute myeloid leukemia: Researchers find genetic conspirators

Date:
March 28, 2011
Source:
Wellcome Trust Sanger Institute
Summary:
Researchers have described how the most common gene mutation found in acute myeloid leukemia starts the process of cancer development and how it can cooperate with other mutations to cause full-blown leukemia. The researchers suggest that three critical steps can transform normal blood cells into leukemic ones. By charting the route towards cancer, the study identifies processes that might could be targets for new treatments for patients with acute myeloid leukemia.
Share:
FULL STORY

Researchers have described how the most common gene mutation found in acute myeloid leukemia starts the process of cancer development and how it can cooperate with a well-defined group of other mutations to cause full-blown leukemia.

The researchers suggest that three critical steps are required to transform normal blood cells into leukemic ones, each subverting a different cellular process. By charting the route towards cancer, the study identifies processes that might serve as targets for new treatments to halt the cancer's development in its tracks and even reverse it.

Acute myeloid leukemia is a rare but devastating disease, which can take hold in a matter of just days or weeks. Every year, 2,000 adults in the UK are diagnosed with acute myeloid leukemia: only about three in ten adults survive for five years.

In recent years researchers have identified a number of genes involved in the development of acute myeloid leukemia. The most common is NPM1, a gene with many known functions. The new research shows that mutation in NPM1 is a key event in the development of a large proportion of cases of acute myeloid leukemia and that it exerts its effect by helping cells to self-renew, a process that can be thought of as the first step towards leukemia. The team also identify two subsequent events that are required to cooperate with NPM1 to drive cells to become cancerous.

"We have used targeted gene disruption to look at the way acute myeloid leukemia develops in mice," says Dr George Vassiliou, Consultant Haematologist, cancer researcher and first author on the study from the Wellcome Trust Sanger Institute, "and have found critical steps that take place when the cancer develops. Identifying the biological steps in turn means we can look for new drugs to reverse the process."

The team started by developing a strain of mice that contained a 'control switch', that allowed the researchers to turn on mutations in the acute myeloid leukemia gene Npm1.

When they switched on the Npm1mutations in the mice, the team saw that the mutation gave normal blood cells the ability to renew themselves more efficiently and boosted the production of a group of blood cells known as myeloid cells.

However, the team found that, despite mutations in this most frequently mutated leukemia gene, only three out of every ten mice developed leukemia and the disease developed only after a long time. The results suggest that the Npm1 mutation can start the leukemic process but cannot, on its own, drive cells towards cancer.

To try to find the events that conspire to cause acute myeloid leukemia, the team studied the same mice using a technique called 'insertional mutagenesis', in which tagged DNA is inserted into the mouse genome. Using this specialised technique, researchers can accelerate the development of cancers by causing mutations in genes at random, while at the same time 'tagging' the altered genes, making them easy to identify. When the process hits a gene that drives cancer, it leads to tumours in the mice -- the team can then use the tag to see which genes were mutated.

By applying the technique to the mice that already had the Npm1 mutation, the team could search for additional genes that work with Npm1 to promote cancer development. As they had anticipated, the team found that more than four in five of these mice rapidly developed acute myeloid leukemia.

Looking at the new gene mutations, the team identified three distinct processes that the mutated genes seemed to govern. While the team were able to confirm the role of Npm1 mutations in cellular self-renewal, they found other genes, which were routinely involved in one of two other processes. The first group of genes controlled the way that cells proliferate; the second group played a role in orchestrating the genetic activity in the cells.

"In our mice two or, in most cases, all three of these cellular processes were subverted," says Allan Bradley, from the Sanger Institute and senior author on the paper. "In concert, these genetic mutations, which were concentrated on a tiny number of genes, transformed normal to leukemic cells. These findings give a much clearer view of how this difficult cancer develops and propagates.

"Our studies in the mouse, using novel methods to alter genes, complement the work of human cancer genomics. Together, we can more rapidly give biological context about just how genetic changes can cause the disease."

Researchers can now look in closer detail at the processes identified and divide them into complementary groups, a crucial first step to developing effective anti-cancer drugs.

"The two main therapeutic options for acute myeloid leukemia have remained unchanged for more than 20 years," says Brian Huntly, MRC Senior Clinical Fellow at the University of Cambridge. "Although our ability to better use existing agents has led to modest improvements in patient survival, we desperately need new treatments to combat this disease and this relies heavily on us understanding the biological processes behind leukemia development.

"The research by Vassiliou et al signals new hope in the search for new treatments to combat this devastating disease."


Story Source:

Materials provided by Wellcome Trust Sanger Institute. Note: Content may be edited for style and length.


Journal Reference:

  1. George S Vassiliou, Jonathan L Cooper, Roland Rad, Juan Li, Stephen Rice, Anthony Uren, Lena Rad, Peter Ellis, Rob Andrews, Ruby Banerjee, Carolyn Grove, Wei Wang, Pentao Liu, Penny Wright, Mark Arends, Allan Bradley. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nature Genetics, 2011; DOI: 10.1038/ng.796

Cite This Page:

Wellcome Trust Sanger Institute. "Acute myeloid leukemia: Researchers find genetic conspirators." ScienceDaily. ScienceDaily, 28 March 2011. <www.sciencedaily.com/releases/2011/03/110327191046.htm>.
Wellcome Trust Sanger Institute. (2011, March 28). Acute myeloid leukemia: Researchers find genetic conspirators. ScienceDaily. Retrieved January 21, 2025 from www.sciencedaily.com/releases/2011/03/110327191046.htm
Wellcome Trust Sanger Institute. "Acute myeloid leukemia: Researchers find genetic conspirators." ScienceDaily. www.sciencedaily.com/releases/2011/03/110327191046.htm (accessed January 21, 2025).

Explore More

from ScienceDaily

RELATED STORIES