New! Sign up for our free email newsletter.
Science News
from research organizations

Liquid metal key to simpler creation of electrodes for microfluidic devices

Date:
February 23, 2011
Source:
North Carolina State University
Summary:
Researchers have developed a faster, easier way to create microelectrodes, for use in microfluidic devices, by using liquid metal. Microfluidic devices manipulate small amounts of fluid and have a wide variety of applications, from testing minute blood samples to performing advanced chemical research.
Share:
FULL STORY

Researchers from North Carolina State University have developed a faster, easier way to create microelectrodes, for use in microfluidic devices, by using liquid metal. Microfluidic devices manipulate small amounts of fluid and have a wide variety of applications, from testing minute blood samples to performing advanced chemical research.

"By making it easier to incorporate electrodes into microfluidic devices, we hope to facilitate research and development into new technologies that utilize those devices, such as biomedical tools," says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the research.

Traditionally, microfluidic devices have incorporated solid metal electrodes that serve as sensors, pumps, antennas or other functions. However, these solid electrodes can be problematic, because they need to be physically aligned to a channel that runs through the device. The channel serves as the entry point for whatever fluid the device is designed to manipulate. Aligning the electrodes is tricky because the electrodes are only tens to hundreds of microns in diameter, as is the channel itself. It is difficult to manipulate objects of that size -- a micron is one-millionth of a meter, and a human hair is approximately 100 microns in diameter.

The NC State team has addressed the problem by designing microfluidic devices that incorporate three channels, with the central channel separated from the other two by a series of closely set posts. The researchers inject the two outer channels with a liquid metal alloy composed of gallium and indium. The alloy fills the outer channels completely, but forms an oxidized "skin" that spans the space between the posts -- leaving the central channel free to receive other fluids.

"This approach allows you to create perfectly aligned electrodes in a single step," Dickey says. "The channels are built into the device, so the electrodes are inherently aligned -- we get the metal to go exactly where we want it. This means creating these devices is easier and faster."

In addition, this approach allows for the creation of electrodes in useful configurations that were previously difficult or impossible to achieve. This can be done by changing the shape of the channels that will be injected with the liquid metal. These configurations would create more uniform electric fields, for use in manipulating fluids and particles.

The paper, "Inherently aligned microfluidic electrodes composed of liquid metal," was co-authored by Dickey and NC State Ph.D. student Ju-Hee So. The paper is forthcoming from the Royal Society of Chemistry's journal Lab on a Chip. The research was supported, in part, by the National Science Foundation.

NC State's Department of Chemical and Biomolecular Engineering is part of the university's College of Engineering.


Story Source:

Materials provided by North Carolina State University. Note: Content may be edited for style and length.


Journal Reference:

  1. Ju-Hee So, Michael D. Dickey. Inherently aligned microfluidic electrodes composed of liquid metal. Lab on a Chip, 2011; 11 (5): 905 DOI: 10.1039/c0lc00501k

Cite This Page:

North Carolina State University. "Liquid metal key to simpler creation of electrodes for microfluidic devices." ScienceDaily. ScienceDaily, 23 February 2011. <www.sciencedaily.com/releases/2011/02/110222122057.htm>.
North Carolina State University. (2011, February 23). Liquid metal key to simpler creation of electrodes for microfluidic devices. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2011/02/110222122057.htm
North Carolina State University. "Liquid metal key to simpler creation of electrodes for microfluidic devices." ScienceDaily. www.sciencedaily.com/releases/2011/02/110222122057.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES