New! Sign up for our free email newsletter.
Science News
from research organizations

Coiled nanowires may hold key to stretchable electronics

Date:
January 12, 2011
Source:
North Carolina State University
Summary:
Researchers have created the first coils of silicon nanowire on a substrate that can be stretched to more than double their original length, moving us closer to incorporating stretchable electronic devices into clothing, implantable health-monitoring devices, and a host of other applications.
Share:
FULL STORY

Researchers at North Carolina State University have created the first coils of silicon nanowire on a substrate that can be stretched to more than double their original length, moving us closer to incorporating stretchable electronic devices into clothing, implantable health-monitoring devices, and a host of other applications.

"In order to create stretchable electronics, you need to put electronics on a stretchable substrate, but electronic materials themselves tend to be rigid and fragile," says Dr. Yong Zhu, one of the researchers who created the new nanowire coils and an assistant professor of mechanical and aerospace engineering at NC State. "Our idea was to create electronic materials that can be tailored into coils to improve their stretchability without harming the electric functionality of the materials."

Other researchers have experimented with "buckling" electronic materials into wavy shapes, which can stretch much like the bellows of an accordion. However, Zhu says, the maximum strains for wavy structures occur at localized positions -- the peaks and valleys -- on the waves. As soon as the failure strain is reached at one of the localized positions, the entire structure fails.

"An ideal shape to accommodate large deformation would lead to a uniform strain distribution along the entire length of the structure -- a coil spring is one such ideal shape," Zhu says. "As a result, the wavy materials cannot come close to the coils' degree of stretchability." Zhu notes that the coil shape is energetically favorable only for one-dimensional structures, such as wires.

Zhu's team put a rubber substrate under strain and used very specific levels of ultraviolet radiation and ozone to change its mechanical properties, and then placed silicon nanowires on top of the substrate. The nanowires formed coils upon release of the strain. Other researchers have been able to create coils using freestanding nanowires, but have so far been unable to directly integrate those coils on a stretchable substrate.

While the new coils' mechanical properties allow them to be stretched an additional 104 percent beyond their original length, their electric performance cannot hold reliably to such a large range, possibly due to factors like contact resistance change or electrode failure, Zhu says. "We are working to improve the reliability of the electrical performance when the coils are stretched to the limit of their mechanical stretchability, which is likely well beyond 100 percent, according to our analysis."

A paper describing the research was published online Dec. 28 by ACS Nano. The paper is co-authored by Zhu, NC State Ph.D. student Feng Xu and Wei Lu, an assistant professor at the University of Michigan. The research was funded by the National Science Foundation.

NC State's Department of Mechanical and Aerospace Engineering is part of the university's College of Engineering.


Story Source:

Materials provided by North Carolina State University. Note: Content may be edited for style and length.


Journal Reference:

  1. Feng Xu, Wei Lu, Yong Zhu. Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics. ACS Nano, 2010; 101228134259017 DOI: 10.1021/nn103189z

Cite This Page:

North Carolina State University. "Coiled nanowires may hold key to stretchable electronics." ScienceDaily. ScienceDaily, 12 January 2011. <www.sciencedaily.com/releases/2011/01/110111141343.htm>.
North Carolina State University. (2011, January 12). Coiled nanowires may hold key to stretchable electronics. ScienceDaily. Retrieved December 22, 2024 from www.sciencedaily.com/releases/2011/01/110111141343.htm
North Carolina State University. "Coiled nanowires may hold key to stretchable electronics." ScienceDaily. www.sciencedaily.com/releases/2011/01/110111141343.htm (accessed December 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES