New! Sign up for our free email newsletter.
Science News
from research organizations

New wave: Spin soliton could be a hit in cell phone communication

Date:
September 16, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have found theoretical evidence of a new way to generate the high-frequency waves used in modern communication devices such as cell phones using exotic "soliton" waves in magnetism. The technique might enable wireless technology that would be more secure and resistant to interference than conventional devices.
Share:
FULL STORY

Researchers at the National Institute of Standards and Technology (NIST) have found theoretical evidence of a new way to generate the high-frequency waves used in modern communication devices such as cell phones. Their analysis, if supported by experimental evidence, could contribute to a new generation of wireless technology that would be more secure and resistant to interference than conventional devices.

The team's findings point toward an oscillator that would harness the spin of electrons to generate microwaves -- electromagnetic waves in the frequencies used by mobile devices. Electron spin is a fundamental property, in addition to basic electrical charge, that can be used in electronic circuits. The discovery adds another potential effect to the list of spin's capabilities.

The team's work -- a novel variation on several types of previously proposed experimental oscillators -- predicts that a special type of stationary wave called a "soliton" can be created in a layer of a multilayered magnetic sandwich. Solitons are shape-preserving waves that have been seen in a variety of media. (They first were observed in a boat canal in 1834 and now are used in optical fiber communications.) Creating the soliton requires that one of the sandwich layers be magnetized perpendicular to the plane of the sandwiched layers; then an electric current is forced through a small channel in the sandwich. Once the soliton is established, the magnetic orientation oscillates at more than a billion times a second.

"That's the frequency of microwaves," says NIST physicist Thomas Silva. "You might use this effect to create an oscillator in cell phones that would use less energy than those in use today. And the military could use them in secure communications as well. In theory, you could change the frequency of these devices quite rapidly, making the signals very hard for enemies to intercept or jam."

Silva adds that the oscillator is predicted to be very stable -- its frequency remaining constant even with variations in current -- a distinct practical advantage, as it would reduce unwanted noise in the system. It also appears to create an output signal that would be both steady and strong.

The team's prediction also has value for fundamental research.

"All we've done at this point is the mathematics, but the equations predict these effects will occur in devices that we think we can realize," Silva says, pointing out that the research was inspired by materials that already exist. "We'd like to start looking for experimental evidence that these localized excitations occur, not least because solitons in other materials are hard to generate. If they occur in these devices as our predictions indicate, we might have found a relatively easy way to explore their properties."


Story Source:

Materials provided by National Institute of Standards and Technology (NIST). Note: Content may be edited for style and length.


Journal Reference:

  1. M. Hoefer, T. Silva, Mark Keller. Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Physical Review B, 2010; 82 (5): 054432 DOI: 10.1103/PhysRevB.82.054432

Cite This Page:

National Institute of Standards and Technology (NIST). "New wave: Spin soliton could be a hit in cell phone communication." ScienceDaily. ScienceDaily, 16 September 2010. <www.sciencedaily.com/releases/2010/09/100915162551.htm>.
National Institute of Standards and Technology (NIST). (2010, September 16). New wave: Spin soliton could be a hit in cell phone communication. ScienceDaily. Retrieved January 23, 2025 from www.sciencedaily.com/releases/2010/09/100915162551.htm
National Institute of Standards and Technology (NIST). "New wave: Spin soliton could be a hit in cell phone communication." ScienceDaily. www.sciencedaily.com/releases/2010/09/100915162551.htm (accessed January 23, 2025).

Explore More

from ScienceDaily

RELATED STORIES