New! Sign up for our free email newsletter.
Science News
from research organizations

Bardet-Biedl syndrome proteins shown to run an export business that protects cilia

Date:
January 4, 2010
Source:
Rockefeller University Press
Summary:
A protein complex mutated in human disease removes excess signaling molecules to prevent them from damaging cilia, say researchers.
Share:
FULL STORY

A protein complex mutated in human disease removes excess signaling molecules to prevent them from damaging cilia, say researchers from UMass Medical School. The study will be published in the December 28 issue of the Journal of Cell Biology.

Defective cilia cause a range of diseases including Bardet-Biedl syndrome (BBS), a rare, multi-tissue disorder linked to mutations in 12 different proteins. Seven of these form a complex called the BBSome, but the function of this protein assembly in cilia and flagella is unclear. In worms, the complex glues together the intraflagellar transport (IFT) machinery that assembles and maintains cilia by hauling cargo back and forth along the organelle's microtubules. But most mammalian cell types can still form cilia in the absence of BBS proteins, suggesting that the BBSome isn't essential for IFT.

Lechtreck et al. turned to the green alga Chlamydomonas, and found that BBS proteins were only present on a subset of IFT particles in each of the alga's two flagella. Strains lacking components of the BBSome showed normal rates of IFT and proper flagellar structure, but couldn't steer away from bright light like wild-type cells could. Mutant flagella accumulated several signaling-related proteins, which the researchers think may disrupt the alga's response to light.

The researchers speculate that a similar buildup of disruptive proteins causes cilia dysfunction in BBS patients; the BBSome may remove excess signaling proteins from flagella by linking them to a subset of IFT particles undergoing retrograde transport out of the cilia. Author Karl Lechtreck says that the next step is to fluorescently tag the signaling proteins and compare their movements to BBS and IFT proteins.


Story Source:

Materials provided by Rockefeller University Press. Note: Content may be edited for style and length.


Journal Reference:

  1. Karl-Ferdinand Lechtreck, Eric C. Johnson, Tsuyoshi Sakai, Deborah Cochran, Bryan A. Ballif, John Rush, Gregory J. Pazour, Mitsuo Ikebe, and George B. Witman. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. The Journal of Cell Biology, 2009; 187 (7): 1117 DOI: 10.1083/jcb.200909183

Cite This Page:

Rockefeller University Press. "Bardet-Biedl syndrome proteins shown to run an export business that protects cilia." ScienceDaily. ScienceDaily, 4 January 2010. <www.sciencedaily.com/releases/2009/12/091228105909.htm>.
Rockefeller University Press. (2010, January 4). Bardet-Biedl syndrome proteins shown to run an export business that protects cilia. ScienceDaily. Retrieved November 24, 2024 from www.sciencedaily.com/releases/2009/12/091228105909.htm
Rockefeller University Press. "Bardet-Biedl syndrome proteins shown to run an export business that protects cilia." ScienceDaily. www.sciencedaily.com/releases/2009/12/091228105909.htm (accessed November 24, 2024).

Explore More

from ScienceDaily

RELATED STORIES